Advertisement

Mycorrhiza

, Volume 17, Issue 5, pp 355–373 | Cite as

Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina

  • C. Barroetaveña
  • E. Cázares
  • M. Rajchenberg
Review

Abstract

The putative ectomycorrhizal fungal species registered from sporocarps associated with ponderosa pine and Douglas-fir forests in their natural range distribution (i.e., western Canada, USA, and Mexico) and from plantations in south Argentina and other parts of the world are listed. One hundred and fifty seven taxa are reported for native ponderosa pine forests and 514 taxa for native Douglas-fir forests based on available literature and databases. A small group of genera comprises a high proportion of the species richness for native Douglas-fir (i.e., Cortinarius, Inocybe, and Russula), whereas in native ponderosa pine, the species richness is more evenly distributed among several genera. The comparison between ectomycorrhizal species richness associated with both trees in native forests and in Patagonia (Argentina) shows far fewer species in the latter, with 18 taxa for the ponderosa pine and 15 for the Douglas-fir. Epigeous species richness is clearly dominant in native Douglas-fir, whereas a more balanced relation epigeous/hypogeous richness is observed for native ponderosa pine; a similar trend was observed for Patagonian plantations. Most fungi in Patagonian Douglas-fir plantations have not been recorded in plantations elsewhere, except Suillus lakei and Thelephora terrestris, and only 56% of the fungal taxa recorded in Douglas-fir plantations around the world are known from native forests, the other taxa being new associations for this host, suggesting that new tree + ectomycorrhizal fungal taxa associations are favored in artificial situations as plantations.

Keywords

Ectomycorrhizas Exotic plantations Fungal species richness Pinus ponderosa Pseudotsuga menziesii 

Notes

Acknowledgments

Funding of this research by Programa Forestal de Desarrollo (SAGPyA 13/97) and by Agencia Nacional de Promoción Científica y Tecnológica (PICT 8647/00) is warmly acknowledged. We thank Dr. Jack States who provided unpublished information and Dr. James Trappe for his exhaustive revision of the manuscript. CB and MR are Researchers of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).

References

  1. Amaranthus M, Trappe JM, Bednar L, Arthur D (1994) Hypogeous fungal production in mature Douglas-fir forest fragments and surrounding plantations and its relation to coarse woody debris and animal mycophagy. Can J For Res 24:2157–2165CrossRefGoogle Scholar
  2. Ammirati SR, Ammirati JF, Bledsoe C (1987) Spatial and temporal distributions of ectomycorrhizal fungi in a Douglas-fir plantation. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. 7th NACOM. IFAS, Gainesville, FL, 81ppGoogle Scholar
  3. Barroetaveña C, Cázares E, Rajchenberg M (2006) Mycorrhizal fungi of Pseudotsuga menziesii, an introduced tree species in central Patagonia (Argentina). Nova Hedwig 83:53–66CrossRefGoogle Scholar
  4. Barroetaveña C, Rajchenberg M, Cazares E (2005) Mycorrhizal fungi in Pinus ponderosa introduced in central Patagonia (Argentina). Nova Hedwig 80:453–464CrossRefGoogle Scholar
  5. Bougher N, Castellano MA (1993) Delimitation of Hymenogaster sensu stricto and four new segregated genera. Mycologia 85:273–293CrossRefGoogle Scholar
  6. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Center for International Agricultural Research Monograph 32, Canberra, AustraliaGoogle Scholar
  7. Castellano MA, Trappe JM, Maser Z, Mazer C (1989) Key to spores of the Genera of Hypogeous Fungi of North temperate forests with special reference to animal mycophagy. Mad River, Eureka, CAGoogle Scholar
  8. Cázares E, Smith JE (1996) Occurrence of vesicular–arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon coast range soils. Mycorrhiza 6:65–67Google Scholar
  9. Cázares E, Trappe JM (1993) Vesicular endophytes in roots of the Pinaceae. Mycorrhiza 2:153–156CrossRefGoogle Scholar
  10. Chapela IH, Osher LJ, Horton TH, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733–1740CrossRefGoogle Scholar
  11. Chu Chou M (1979) Mycorrhizal fungi of Pinus radiata in new Zealand. Soil Biol Biochem 11:557–562CrossRefGoogle Scholar
  12. Chu Chou M, Grace LJ (1981) Mycorrhizal fungi of Pseudotsuga menziesii in the north island of New Zealand. Soil Biol Biochem 13:247–249CrossRefGoogle Scholar
  13. Chu Chou M, Grace LJ (1983) Hypogeous fungi associated with some forest trees in New Zealand. N Z J Bot 21:183–190CrossRefGoogle Scholar
  14. Chu Chou M, Grace LJ (1990) Mycorrhizal fungi of radiata pine seedlings in nurseries and trees in forests. Soil Biol Biochem 22:959–966CrossRefGoogle Scholar
  15. Colgan III W, Carey AB, Trappe JM, Molina R, Thysell D (1999) Diversity and productivity of hypogeous fungal sporocarps in a variably thinned Douglas-fir forest. Can J For Res 29:1259–1268CrossRefGoogle Scholar
  16. Davel MM (1998) Identificación y caracterización de zonas de crecimiento para pino oregon en la Patagonia Andina Argentina. M.S. thesis, Universidad Austral de Chile, Valdivia, Chile, p 120Google Scholar
  17. Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdiciplinary field. New Phytol 150:555–562CrossRefGoogle Scholar
  18. Fogel R (1976) Ecological studies of hypogeous fungi II: Basidiome phenology in a western Oregon Douglas-fir stand. Can. J Bot 54:1152–1162CrossRefGoogle Scholar
  19. Fontenla S, Godoy R, Rosso P, Havrylenko M (1998) Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 8:29–33CrossRefGoogle Scholar
  20. Garrido N (1986) Survey of ectomycorrhizal fungi associated with exotic forest trees in Chile. Nova Hedwig 43:423–442Google Scholar
  21. Giachini AJ, Oliveira VL, Castellano MA, Trappe JM (2000) Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brasil. Mycologia 92:1166–1177CrossRefGoogle Scholar
  22. Gilbertson RL (1974) Fungi that decay ponderosa pine. The University of Arizona Press, Tucson, AZGoogle Scholar
  23. Godoy R, Romero R, Carrillo R (1994) Estatus micotrófico de la flora vascular en bosques de coníferas del sur de Chile. Rev Chil Hist Nat 67:209–220Google Scholar
  24. Gonda HE (2001) Pino ponderosa, productividad de las plantaciones en la Patagonia Andina. Folleto de Divulgación 16, Centro Forestal CIEFAP, Esquel, Chubut, ArgentinaGoogle Scholar
  25. Grubisha LC, Trappe JM, Spatafora JW (2002) Biology of the ectomycorrhizal genus Rhizopogon IV. Re-examination of infrageneric relationships inferred from phylogenetic analysis of internal transcribed spacer sequences. Mycologia 94:607–619CrossRefPubMedGoogle Scholar
  26. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, New YorkGoogle Scholar
  27. Hermann RK, Lavender DP (1990) Pseudotsuga menziesii. In: Burns RM, Honkala BH (eds) Silvics of North America, vol 1 conifers. Agriculture Handbook 654, Forest Service, Washington, DC, pp 527–540Google Scholar
  28. Hunt GA, Trappe JM (1987) Seasonal hypogeous sporocarp production in a western Oregon Douglas-fir stand. Can J Bot 65:438–445CrossRefGoogle Scholar
  29. INFOR (1996) Potencialidad de especies y sitios para una diversificación silvícola nacional: Monografía de pino oregon. INFOR, Santiago de Chile, Chile, p 128Google Scholar
  30. Jansen AE (1991) The mycorrhizal status of Douglas-fir in The Netherlands: its relation with stand age, regional factor, atmospheric pollutants and tree vitality. Agric Ecosyst Environ 35:191–208CrossRefGoogle Scholar
  31. Kõljalg U, Dahlberg A, Taylor AFS, Larson E, Hallenberg N, Stenlid J, Larsson KH, Fransson PM, Kårén O, Jonsson L (2000) Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests. Mol Ecol 9:1985–1996CrossRefPubMedGoogle Scholar
  32. Lamb RJ (1979) Factors responsible for the distribution of mycorrhizal fungi of Pinus in eastern Australia. Aust For Res 9:25–34Google Scholar
  33. Long JM (1995) The Middle and Southern Rocky Mountain Region. In: Barret JW (ed) Regional silviculture of the United States, 3rd edn. Wiley, New York, pp 335–386Google Scholar
  34. Luoma DL (1991) Annual changes in seasonal production of hypogeous basidiomes in Oregon Douglas-fir forests. In: Ruggiero LF, Aubry KB, Carey AB, Huff MH (tech. cords.) Wildlife habitat relationships in old-growth Douglas-fir forests. Gen Tech Rep PNW (US Forest Serv) 285:83–89Google Scholar
  35. Luoma DL, Frenkel RE, Trappe JM (1991) Fruiting of hypogeous fungi in Oregon Douglas-fir forests: seasonal and habitat variation. Mycologia 83:335–353CrossRefGoogle Scholar
  36. Martín MP (1996) The genus Rhizopogon in Europe. Ediciones especiales de la Sociedad Catalana de Micología vol 5, BarcelonaGoogle Scholar
  37. Massicotte HB, Molina R, Luoma DL, Smith JE (1994) Biology of the ectomycorhizal fungal genus Rhizopogon II. Patterns of host–fungus specificity using spore inoculation of diverse host grown in mono- and dual culture. New Phytol 126:677–690CrossRefGoogle Scholar
  38. Mathiasen RL, Albion CS (2001) Sporocarp production of ectomycorrhiza associated with ponderosa pine in four stand types in Northern Arizona. Harv Pap Bot 6:147–154Google Scholar
  39. Melichar M, Daniels Hetrick B, Geyer W (1985) Endemic ectomycorrhizal fungi of ponderosa pine in the central plains. In: Molina R (ed) Proceedings of the 6th North American Conference on Mycorrhyzae. Forest Research Laboratory, Oregon State University, Corvallis, Oregon, 278ppGoogle Scholar
  40. Meyer FH (1973) Distribution of ectomycorrhiza in native and man made forests. In: Marks GC, Kozlowsky TT (eds) Ectomycorrhizae, their ecology and physiology. Academic, New York, pp 87–105Google Scholar
  41. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community–ecological consequences and practical implications. In: Allen MJ (ed) Mycorrhizal functioning, an integrative plant–fungal process. Chapman & May, New York, pp 357–423Google Scholar
  42. Molina R, Trappe JM (1994) Biology of the ectomycorrhizal genus Rhizopogon I: host associations, host specificity and pure culture syntheses. New Phytol 126:653–675CrossRefGoogle Scholar
  43. Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Sci 28:423–458Google Scholar
  44. Molina R, Trappe JM, Grubisha LC, Spatafora JW (1999) Rhizopogon. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin, pp 129–186CrossRefGoogle Scholar
  45. Moore-Landecker E (1996) Fundamentals of the fungi. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  46. Norvell LL, Exeter RL (2004) Ectomycorrhizal epigeous basidiomycete diversity in Oregon Coast range Pseudotsuga menziesii forests—preliminary observations. In: Cripps CL (ed) Fungi in forest ecosystems: systematic, diversity and ecology. New York Botanical Garden, New York, pp 159–189Google Scholar
  47. O’Dell TE, Luoma DL, Molina R (1992) Ectomycorrhizal fungal communities in young, managed and old growth Douglas-fir stands. Northwest Environ J 8:166–168Google Scholar
  48. Oliver WW, Ryker RA (1991) Pinus ponderosa. In: Burns RM, Honkala BH (eds) Silvics of North America vol.1: Conifers. Agriculture Handbook 654, Forest Service, Washington, DCGoogle Scholar
  49. Parladé J, Alvarez IF, Pera J (1996a) Ability of native ectomycorrhizal fungi from northern Spain to colonize Douglas-fir and other introduced conifers. Mycorrhiza 6:51–55Google Scholar
  50. Parladé J, Pera J, Alvarez IF (1996b) Inoculation of containerized Pseudotsuga menziesii and Pinus pinaster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza 6:237–245CrossRefGoogle Scholar
  51. Smith JE, Johnson K, Cázares E (1998) Vesicular mycorrhizal colonization of seedlings of Pinaceae and Betulaceae after spore inoculation with Glomus intraradices. Mycorrhiza 7:279–285CrossRefGoogle Scholar
  52. Smith JE, Molina R, Huso MMP, Luoma DL, Mckay D, Castellano MA, Lebel T, Valachovic Y (2002) Species richness, abundance and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in youg, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon (USA). Can J Bot 80:186–204CrossRefGoogle Scholar
  53. States JS (1984a) Hypogeous mycorrhizal fungi associated with ponderosa pine: sporocarp phenology. In: Proceedings of the 6th North American Conference on Mycorrhizae. Bend, OR, 271ppGoogle Scholar
  54. States JS (1984b) New records of false truffles in pine forests of Arizona. Mycotaxon 19:351–367Google Scholar
  55. States JS, Gaud WS (1997) Ecology of hypogeous fungi associated with ponderosa pine. I. Patterns of distribution and sporocarp production in some Arizona forests. Mycotaxon 89:712–721Google Scholar
  56. Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353–1359CrossRefGoogle Scholar
  57. Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606CrossRefGoogle Scholar
  58. Trappe JM (1977) Selection of fungi for inoculation in nurseries. Annu Rev Phytopathol 15:203–222CrossRefGoogle Scholar
  59. Vega Alonso G, Rodríguez Soalleiro R, Arenas Ruiz SG, Garcia Sánchez S, Mansilla Alonso P, Mansilla Vazquez P, Vega Alonso P, Ruiz Gonzalez AD (1998) Manual de selvicultura de pino Oregon. http://www.agrobyte.lugo.usc.es/agrobyte/publicaciones

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Centro de Investigación Forestal CIEFAPEsquelArgentina
  2. 2.Department of Forest ScienceOregon State UniversityCorvallisUSA

Personalised recommendations