Mycorrhiza

, Volume 17, Issue 4, pp 291–297

Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition

Original Paper

Abstract

The potential of three arbuscular mycorrhizal fungi (AMF) to enhance the production of antioxidants (rosmarinic and caffeic acids, RA and CA) was investigated in sweet basil (Ocimum basilicum). After adjusting phosphorus (P) nutrition so that P concentrations and yield were matched in AM and non-mycorrhizal (NM) plants we demonstrated that Glomus caledonium increased RA and CA production in the shoots. Glomus mosseae also increased shoot CA concentration in basil under similar conditions. Although higher P amendments to NM plants increased RA and CA concentrations, there was higher production of RA and CA in the shoots of AM plants, which was not solely due to better P nutrition. Therefore, AMF potentially represent an alternative way of promoting growth of this important medicinal herb, as natural ways of growing such crops are currently highly sought after in the herbal industry.

Keywords

Ocimum basilicum Phytochemicals Rosmarinic acid Caffeic acid Plant phosphorus nutrition 

References

  1. Allen MF, Moore TS, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J Bot 58:371–374Google Scholar
  2. Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471CrossRefGoogle Scholar
  3. Bais HP, Walker TS, Schweizer HP, Vivanco JA (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995CrossRefGoogle Scholar
  4. Cavagnaro TR, Smith FA, Lorimer MF, Haskard KA, Ayling SM, Smith SE (2001) Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytol 149:105–113CrossRefGoogle Scholar
  5. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494PubMedCrossRefGoogle Scholar
  6. Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232CrossRefGoogle Scholar
  7. Cuvelier M-E, Berset C, Richard H (1994) Antioxidant constituents in sage (Salvia officinalis). J Agric Food Chem 42:665–669CrossRefGoogle Scholar
  8. Devi MC, Reddy MN (2002) Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regul 37:151–156CrossRefGoogle Scholar
  9. Fillion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533CrossRefGoogle Scholar
  10. Freitas MSM, Martins MA, Vieira E (2004) Yield and quality of essential oils of Mentha arvensis in response to inoculation with arbuscular mycorrhizal fungi. Pesqui Agropecu Bras 39:887–894Google Scholar
  11. Gehring CA, Whitham TG (2002) Mycorrhizae–herbivore interactions: population and community consequences. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology (157). Springer, Berlin Heidelberg New York, pp 295–320Google Scholar
  12. Grandmaison J, Vancalsteren MR, Furlan V (1993) Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza 3:155–164CrossRefGoogle Scholar
  13. Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79PubMedCrossRefGoogle Scholar
  14. Hanson WC (1950) The photometric determination of phosphorus in fertilizers using the phosphovanado–molybdate complex. J Sci Food Agric 1:172–173CrossRefGoogle Scholar
  15. Hirasa K, Takemasa M (1998) Spice science and technology. Marcel Dekker, New YorkGoogle Scholar
  16. Javanmardi J, Khalighi A, Kashi A, Bais HP, Vivanco JM (2002) Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem 50:5878–5883PubMedCrossRefGoogle Scholar
  17. Jayasinghe C, Gotoh N, Aoki T, Wada S (2003) Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J Agric Food Chem 51:4442–4449PubMedCrossRefGoogle Scholar
  18. Juliani R, Simon JE (2002) Antioxidant activity of basil. Trends in new crops and new uses. ASHS Press, Alexandria, VAGoogle Scholar
  19. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962PubMedCrossRefGoogle Scholar
  20. Kapoor R, Giri B, Mukerji KG (2002a) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fascilucatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79CrossRefGoogle Scholar
  21. Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342CrossRefGoogle Scholar
  22. Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446PubMedCrossRefGoogle Scholar
  23. Larose G, Chenevert R, Moutoglis P, Gagne S, Piche Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339CrossRefGoogle Scholar
  24. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  25. Morandi D, Bailey JA, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364CrossRefGoogle Scholar
  26. Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125PubMedCrossRefGoogle Scholar
  27. Phippen WB, Simon JE (1998) Anthocyanins in basil (Ocimum basilicum L.). J Agric Food Chem 46:1734–1738CrossRefGoogle Scholar
  28. Phippen WB, Simon JE (2000) Anthocyanin inheritance and instability in purple basil (Ocimum basilicum L.). J Hered 91:289–296PubMedCrossRefGoogle Scholar
  29. Pizzale L, Bortolomeazzi R, Vichi S, Uberegger E, Conte LS (2002) Antioxidant activity of sage (Salvia officinalis and S. fruticosa) and oregano (Origanum onites and O. indercedens) extracts related to their phenolic compound content. J Sci Food Agric 82:1645–1651CrossRefGoogle Scholar
  30. Rojas-Andrade R, Cerda-Garcia-Rojas CM, Frias-Hernandez JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52PubMedCrossRefGoogle Scholar
  31. Sacchetti G, Medici A, Maietti S, Radice N, Muzzoli M, Manfredini S, Braccioli E, Bruni R (2004) Composition and functional properties of the essential oil of Amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J Agric Food Chem 52:3486–3491PubMedCrossRefGoogle Scholar
  32. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, LondonGoogle Scholar
  33. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20PubMedCrossRefGoogle Scholar
  34. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438Google Scholar
  35. Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260PubMedCrossRefGoogle Scholar
  36. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular–mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007PubMedGoogle Scholar
  37. Vierheilig H, Gagnon H, Strack D, Maier W (2000) Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9:291–293CrossRefGoogle Scholar
  38. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  39. Wang HF, Provan GJ, Helliwell K (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 87:307–311CrossRefGoogle Scholar
  40. Yao MK, Desilets H, Charles MT, Boulanger R, Tweddell RJ (2003) Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza 13:333–336PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Earth and Environmental Sciences, Waite Campus DP 636The University of AdelaideAdelaideAustralia

Personalised recommendations