, Volume 17, Issue 3, pp 195–208 | Cite as

Arbuscular mycorrhizas and ectomycorrhizas of Uapaca bojeri L. (Euphorbiaceae): sporophore diversity, patterns of root colonization, and effects on seedling growth and soil microbial catabolic diversity

  • Naina Ramanankierana
  • Marc Ducousso
  • Nirina Rakotoarimanga
  • Yves Prin
  • Jean Thioulouse
  • Emile Randrianjohany
  • Luciano Ramaroson
  • Marija Kisa
  • Antoine Galiana
  • Robin DuponnoisEmail author
Original Paper


The main objectives of this study were (1) to describe the diversity of mycorrhizal fungal communities associated with Uapaca bojeri, an endemic Euphorbiaceae of Madagascar, and (2) to determine the potential benefits of inoculation with mycorrhizal fungi [ectomycorrhizal and/or arbuscular mycorrhizal (AM) fungi] on the growth of this tree species and on the functional diversity of soil microflora. Ninety-four sporophores were collected from three survey sites. They were identified as belonging to the ectomycorrhizal genera Afroboletus, Amanita, Boletus, Cantharellus, Lactarius, Leccinum, Rubinoboletus, Scleroderma, Tricholoma, and Xerocomus. Russula was the most frequent ectomycorrhizal genus recorded under U. bojeri. AM structures (vesicles and hyphae) were detected from the roots in all surveyed sites. In addition, this study showed that this tree species is highly dependent on both types of mycorrhiza, and controlled ectomycorrhization of this Uapaca species strongly influences soil microbial catabolic diversity. These results showed that the complex symbiotic status of U. bojeri could be managed to optimize its development in degraded areas. The use of selected mycorrhizal fungi such the Scleroderma Sc1 isolate in nursery conditions could be of great interest as (1) this fungal strain is very competitive against native symbiotic microflora, and (2) the fungal inoculation improves the catabolic potentialities of the soil microflora.


Ectomycorrhizas Arbuscular mycorrhizas Fungal diversity Microbial functionalities Uapaca bojeri Madagascar 


  1. Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62CrossRefGoogle Scholar
  2. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96CrossRefGoogle Scholar
  3. Bâ AM, Thoen D (1990) First synthesis of ectomycorrhizas between Afzelia africana Sm. (Caesalpinioideae) and native fungi from West Africa. New Phytol 114:99–103CrossRefGoogle Scholar
  4. Bâ AM, Garbaye J, Dexheimer J (1991) Influence of fungal propagules during the early stage of the time sequence of ectomycorrhizal colonization on Afzelia africana seedlings. Can J Bot 69:2442–2447CrossRefGoogle Scholar
  5. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  6. Brundrett MC, Piche Y, Peterson RL (1985) A developmental study of the early stages in vesicular-arbuscular mycorrhizal formation. Can J Bot 63:184–194CrossRefGoogle Scholar
  7. Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol Rev 24:601–614CrossRefPubMedGoogle Scholar
  8. Buyck B, Thoen D, Walting R (1996) Ectomycorrhizal fungi of the Guinea–Congo region. Proc R Soc Edinb 104:313–333Google Scholar
  9. Casper BB, Cahill JF (1998) Population-level responses to nutrient heterogeneity and density by Abutilon theophrasti (Malvaceae): an experimental neighbourhood approach. Am J Bot 85:1680–1687CrossRefPubMedGoogle Scholar
  10. Cazares E, Trappe JM (1993) Vesicular endophytes in roots of the Pinaceae. Mycorrhiza 2:153–156CrossRefGoogle Scholar
  11. Chilvers GA, Lapeyrie FF, Horan DP (1987) Ectomycorrhizal vs endomycorrhizal fungi within the same root system. New Phytol 107:441–448CrossRefGoogle Scholar
  12. Culhane AC, Perriere G, Considine EC, Cotter TG, Higgins DG (2002) Between-group analysis of microarray data. Bioinformatics 18:1600–1608CrossRefPubMedGoogle Scholar
  13. Deacon JW, Donaldson SJ, Last FT (1983) Sequences and interactions of mycorrhizal fungi on birch. Plant Soil 71:257–262CrossRefGoogle Scholar
  14. Degens BP, Harris JA (1997) Development of a physiological approach to measuring the metabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320CrossRefGoogle Scholar
  15. Degens BP, Vojvodic-Vukovic M (1999) A sampling strategy to assess the effects of land use on microbial functional diversity in soils. Aust J Soil Res 37:593–601Google Scholar
  16. Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153CrossRefGoogle Scholar
  17. Dhillion SS (1994) Ectomycorrhizae, arbuscular mycorrhizae, and Rhizoctonia sp. of alpine and boreal Salix spp. in Norway. Arct Alp Res 26:304–307CrossRefGoogle Scholar
  18. Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255CrossRefGoogle Scholar
  19. Diédhiou AG, Guèye O, Diabaté M, Prin Y, Duponnois R, Dreyfus B, Bâ AM (2005) Contrasting responses to ectomycorrhizal inoculation in seedlings of six tropical African tree species. Mycorrhiza 16:11–17CrossRefPubMedGoogle Scholar
  20. Dolédec S, Chessel D (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique I-Description d’un plan d’observations complet par projection de variables. Acta Oecol 8:403–426Google Scholar
  21. Ducousso M, Béna G, Bourgeois C, Buyck B, Eyssartier G, Vincelette M, Rabevohitra R, Randrihasipara L, Dreyfus B, Prin Y (2004) The last common ancestor of Sarcolonaceae and Asian dipterocarp trees was ectomycorrhizal before the India–Madagascar separation, about 88 million years ago. Mol Ecol 13:231–236CrossRefPubMedGoogle Scholar
  22. Duponnois R, Garbaye J (1991) Techniques for controlled synthesis of the Douglas fir—Laccaria laccata ectomycorrhizal symbiosis. Ann For Sci 48:239–251CrossRefGoogle Scholar
  23. Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91CrossRefPubMedGoogle Scholar
  24. Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17:239–251CrossRefGoogle Scholar
  25. Duponnois R, Diédhiou S, Chotte JL, Sy MO (2003) Relative importance of the endomycorrhizal and/or ectomycorrhizal associations in Allocasuarina and Casuarina genera. Can J Microbiol 49(4):281–287CrossRefPubMedGoogle Scholar
  26. Duponnois R, Founoune H, Masse D, Pontanier R (2005) Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. For Ecol Manag 207:351–362CrossRefGoogle Scholar
  27. Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in soil environment. Can J Microbiol 42:881–895CrossRefGoogle Scholar
  28. Egerton-Warburton L, Allen MF (2001) Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290CrossRefPubMedGoogle Scholar
  29. Elliot LF, Lynch JM (1994) Biodiversity and soil resilience. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford, UK, pp 353–364Google Scholar
  30. Estaun V, Save R, Biel C (1997) AM inoculation as a biological tool to improve plant re-vegetation of a disturbed soil with Rosmarinus officinalis under semi-arid conditions. Appl Soil Ecol 6:223–229CrossRefGoogle Scholar
  31. Farley RA, Fitter AH (1999) The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849–859CrossRefGoogle Scholar
  32. Founoune H, Duponnois R, Bâ AM (2002a) Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea in glasshouse conditions (A. Cunn. ex G. Don). Ann For Sci 59:93–98CrossRefGoogle Scholar
  33. Founoune H, Duponnois R, Bâ AM, Sall S, Branger I, Lorquin J, Neyra M, Chotte JL (2002b) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus albus. New Phytol 153:81–89CrossRefGoogle Scholar
  34. Franson RI, Bethlenfalvay GJ (1989) Infection unit method of vesicular-arbuscular mycorrhizal propagule determination. Soil Sci Soc Am J 53:754–756CrossRefGoogle Scholar
  35. Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir Laccaria bicolor Mycorrhizosphere. Appl Environ Microbiol 63:1852–1860PubMedPubMedCentralGoogle Scholar
  36. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JP, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328CrossRefPubMedGoogle Scholar
  37. Green GM, Sussman RW (1990) Deforestation history of the eastern rain forests of Madagascar from satellite images. Science 248:212–215CrossRefPubMedGoogle Scholar
  38. Heim R (1970) Particularités remarquables des Russules tropicales Pelliculariae lilliputiennes: Les complexes annulata et radicans. Bull Soc Mycol France 86:59–77Google Scholar
  39. Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infrared gas analysis. Plant Soil 116:77–81CrossRefGoogle Scholar
  40. Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133PubMedPubMedCentralGoogle Scholar
  41. Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871CrossRefPubMedGoogle Scholar
  42. Jasper DA, Abbot LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118:471–476CrossRefGoogle Scholar
  43. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rock: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254CrossRefPubMedGoogle Scholar
  44. Lapeyrie FF, Chilvers GA (1985) An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol 100:93–104CrossRefGoogle Scholar
  45. Lebreton JD, Sabatier R, Banco G, Bacou AM (1991) Principal component and correspondence analyses with respect to instrumental variables: an overview of their role in studies of structure-activity and species-environment relationships. In: Devillers J, Karcher W (eds) Applied multivariate analysis in SAR and environmental studies. Kluwer, pp 85–114Google Scholar
  46. Lee SS (1998) Root symbiosis and nutrition. In: Appanah S, Turnbull JMA (eds) Review of dipterocarps: taxonomy, ecology and sylviculture. CIFOR, Bogor, Indonesia, pp 99–114Google Scholar
  47. Lee SS, Alexander IJ, Watling R (1997). Ectomycorrhizas and putative ectomycorrhizal fungi of Shorea leprosula Miq. (Dipterocarpaceae). Mycorrhiza 7:63–81CrossRefGoogle Scholar
  48. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371Google Scholar
  49. Lodge DJ, Wentworth TR (1990) Negative associations among VA-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root system. Oikos 57:347–356CrossRefGoogle Scholar
  50. Lowry PPII, Schatz GE, Phillipson PB (1997) The classification of natural and anthropogenic vegetation in Madagascar. In: Goodman SM, Patterson BD (eds) Natural change and human impact in Madagascar. Smithsonian Institute Press, Washington, DC, pp 93–123Google Scholar
  51. Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, LondonCrossRefGoogle Scholar
  52. Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140CrossRefPubMedGoogle Scholar
  53. Marx DH (1991) The practical significance of ectomycorrhizae in forest establishment. Ecophysiology of forest trees. Marcus Wallenberg Found Symp Proc 7:54–90Google Scholar
  54. McGee P (1989) Variation in propagule numbers of vesicular-arbuscular mycorrhizal fungi in a semi-arid soil. New Phytol 92:28–33Google Scholar
  55. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical applications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, NY, USA, pp 357–423Google Scholar
  56. Molina R, Myrold D, Li CY (1994) Root symbiosis of red alder: technological opportunities for enhanced regeneration and soil improvement. In: Hibbs DE, DeBell DS, Tarrant RF (eds) The biology and management of red alder. Oregon State University Press, Corvallis, OR, pp 23–46Google Scholar
  57. Moyersoen B, Fitter A (1999) Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8:247–253CrossRefGoogle Scholar
  58. Ochs M (1996) Influence of humidified and non-humidified natural organic compounds on mineral dissolution. Chem Geol 132:119–124CrossRefGoogle Scholar
  59. Olsen SR, Cole, CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, vol 939. US Department of Agriculture, Washington, DC, p 19Google Scholar
  60. Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989) Bootstrapping in ecosystems. Bioscience 39:230–237CrossRefGoogle Scholar
  61. Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular fungi for rapid assessment of infections. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  62. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotropism. Biosystems 6:153–164CrossRefPubMedGoogle Scholar
  63. Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209CrossRefGoogle Scholar
  64. Plenchette C., Declerck S, Diop T, Strullu DG (1996) Infectivity of monoaxenic subcultures of the AM fungus Glomus versiforme associated with Ri-TDNA transformed root. Appl Microbiol Biotechnol 46:545–548CrossRefGoogle Scholar
  65. Rao CR (1964) The use and interpretation of principal component analysis in applied research. Sankhya A 26:329–359Google Scholar
  66. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in “lower” land plants. Philos Trans R Soc Lond Ser B-Biol Sci 355:815–830CrossRefGoogle Scholar
  67. Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498CrossRefPubMedPubMedCentralGoogle Scholar
  68. Riviere T, Natarajan K, Dreyfus B (2006) Spatial distribution of ectomycorrhizal basidiomycete Russula subsect. Foetentinae populations in a primary dipterocarp rainforest. Mycorrhiza 16:143–148CrossRefPubMedGoogle Scholar
  69. Sanon K, Bâ AM, Dexheimer J (1997) Mycorrhizal status of some fungi fruiting beneath indigenous trees in Burkina Faso. For Ecol Manag 98:61–69CrossRefGoogle Scholar
  70. Schreiner RP, Mihara KL, McDaniel KL, Bethlenfalvay GJ (2003) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209CrossRefGoogle Scholar
  71. Smith S, Read J (1997) Mycorrhizal symbiosis, 2nd edn. Clarendon, OxfordGoogle Scholar
  72. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83CrossRefGoogle Scholar
  73. Thoen D, Bâ AM (1989) Ectomycorrhizae and putative ectomycorrhizal fungi of Afzelia africana and Uapaca guineensis in Southern Senegal. New Phytol 113:549–559CrossRefGoogle Scholar
  74. Vagen TG, Andrianorofanomezana MAA, Andrianorofanomezana S (2006a) Deforestation and cultivation effects on characteristics of oxisols in the highlands of Madagascar. Geoderma 131:190–200CrossRefGoogle Scholar
  75. Vagen TG, Walsh MG, Shepherd KD (2006b) Stable isotopes for characterisation of trends in soil carbon following deforestaion and land use change in the highlands of Madagascar. Geoderma 135:133–139CrossRefGoogle Scholar
  76. Valentine LL, Fieldler TL, Hart AA, Petersen CA, Berninghausen HK, Southworth D (2004) Diversity of ectomycorrhizas associated with Quercus garryana in southern Oregon. Can J Bot 82:123–135CrossRefGoogle Scholar
  77. van der Hejden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  78. Wardle DA, Giller KE, Barker GM (1999) The regulation and functional significance of soil biodiversity in agro-ecosystems. In: Wood D, Lenné JM (eds) Agrobiodiversity: characterisation, utilisation and management. CABI, London, pp 87–121Google Scholar
  79. Watling R, Lee SS (1998) Ectomycorrhizal fungi associated with members of the Dipterocarpaceae in Peninsular Malaysia-II. J Trop For Sci 10:421–430Google Scholar
  80. West AW, Sparling GP (1986) Modifications of the substrate-induced respiration method to permit measurements of microbial biomass in soils of differing water contents. J Microbiol Methods 5:177–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Naina Ramanankierana
    • 1
  • Marc Ducousso
    • 2
  • Nirina Rakotoarimanga
    • 1
  • Yves Prin
    • 2
  • Jean Thioulouse
    • 3
  • Emile Randrianjohany
    • 1
  • Luciano Ramaroson
    • 1
  • Marija Kisa
    • 4
  • Antoine Galiana
    • 2
  • Robin Duponnois
    • 4
    • 5
    Email author
  1. 1.Laboratoire de Microbiologie de l’EnvironnementCentre National de Recherches sur l’EnvironnementAntananarivoMadagascar
  2. 2.CIRAD, UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), TA10/JCampus International de BaillarguetMontpellier Cedex 5France
  3. 3.CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558Université Lyon 1Villeurbanne CedexFrance
  4. 4.IRD, UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), TA10/JCampus International de BaillarguetMontpellier Cedex 5France
  5. 5.IRD, Laboratoire Commun de Microbiologie IRD/ISRA/UCADCentre de Recherche de Bel AirDakarSenegal

Personalised recommendations