Advertisement

Mycorrhiza

, Volume 16, Issue 7, pp 485–494 | Cite as

Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese

  • Andrea Copetta
  • Guido Lingua
  • Graziella Berta
Original Paper

Abstract

The essential oils of basil are widely used in the cosmetic, pharmaceutical, food, and flavoring industries. Little is known about the potential of arbuscular mycorrhizal (AM) fungi to affect their production in this aromatic plant. The effects of colonization by three AM fungi, Glomus mosseae BEG 12, Gigaspora margarita BEG 34, and Gigaspora rosea BEG 9 on shoot and root biomass, abundance of glandular hairs, and essential oil yield of Ocimum basilicum L. var. Genovese were studied. Plant P content was analyzed in the various treatments and no differences were observed. The AM fungi induced various modifications in the considered parameters, but only Gi. rosea significantly affected all of them in comparison to control plants or the other fungal treatments. It significantly increased biomass, root branching and length, and the total amount of essential oil (especially α-terpineol). Increased oil yield was associated to a significantly larger number of peltate glandular trichomes (main sites of essential oil synthesis) in the basal and central leaf zones. Furthermore, Gi. margarita and Gi. rosea increased the percentage of eugenol and reduced linalool yield. Results showed that different fungi can induce different effects in the same plant and that the essential oil yield can be modulated according to the colonizing AM fungus.

Keywords

Ocimum basilicum L. AM fungi Essential oil Glandular hairs Lamiaceae 

Notes

Acknowledgements

The authors wish to thank Prof. L. Ariati and Dr. A. Carretta for useful discussion of the data; Dr. H. Vierheilig and his group for preview of their manuscript; Dr. E. Costa for the use of SEM facilities; Dr. Giulio Lanati for his precious help throughout the experiments; and Dr. E. Gamalero for critical reading of the manuscript.

References

  1. Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66:762–769CrossRefPubMedGoogle Scholar
  2. Allen MF, Moore TS, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J Bot 58:371–374CrossRefGoogle Scholar
  3. Berta G, Fusconi A, Hooker J (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 71–86CrossRefGoogle Scholar
  4. Dickson S (2004) The ArumParis continuum of mycorrhizal symbiosis. New Phytol 163:187–200CrossRefGoogle Scholar
  5. Dixon RK, Garret HE, Cox GS (1988) Cytokinins in the root pressure exudate of Citrus Jambhiri Lush. colonized by vesicular arbuscular mycorrhiza. Tree Physiol 4:9–18CrossRefPubMedGoogle Scholar
  6. Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216:148–154CrossRefPubMedGoogle Scholar
  7. Freitas MSM, Martins MA, Curcino Vieira IJ (2004) Yield and quality of essential oils of Mentha arvensis in response to inoculation with arbuscular mycorrhizal fungi. Pesqui Agropecu Bras 39:887–894CrossRefGoogle Scholar
  8. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192CrossRefPubMedGoogle Scholar
  9. Gang DR, Wang J, Dudareva N, Hee Nam K, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555CrossRefPubMedPubMedCentralGoogle Scholar
  10. Grayer RJ, Kite GC, Goldstone FJ, Bryan SE, Paton A, Putievsky E (1996) Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry 43:1033–1039CrossRefPubMedGoogle Scholar
  11. Griffin SG, Wyllie SG, Markham JL, Leach DN (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–332CrossRefGoogle Scholar
  12. Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756CrossRefGoogle Scholar
  13. Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79CrossRefPubMedGoogle Scholar
  14. Hasegawa Y, Tajima K, Toi N, Sugimura Y (1997) Characteristic components found in the essential oil of Ocimum basilicum L. Flavour Fragr J 12:195–200CrossRefGoogle Scholar
  15. Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ioannidis D, Bonner L, Johnson CB (2002) UV-B is required for normal development of oil glands in Ocimum basilicum L. (sweet basil). Ann Bot (Lond) 90:453–460CrossRefGoogle Scholar
  17. Kaldorf M, Ludwig-Müller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67CrossRefGoogle Scholar
  18. Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in dill (Anethum graveolens L.) and carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463CrossRefGoogle Scholar
  19. Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 88:1–4Google Scholar
  20. Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare Mill. on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311CrossRefPubMedGoogle Scholar
  21. Khaliq A, Janardhanan KK (1997) Influence of vesicular arbuscular mycorrhizal fungi on the productivity of cultivated mints. J Med Arom Plant Sci 19:7–10Google Scholar
  22. Khaosaad T, Vierheilig H, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alters the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza (in this issue)Google Scholar
  23. Labra M, Miele M, Ledda B, Grassi F, Mazzei M, Sala F (2004) Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci 167:725–731CrossRefGoogle Scholar
  24. Lachowicz KJ, Jones GP, Briggs DR, Bienvenu FE, Palmer MV, Mishra V, Murray Hunter M (1997) Characteristics of plants and plant extracts from five varieties of basil (Ocimum basilicum L.) grown in Australia. J Agric Food Chem 45:2660–2665CrossRefGoogle Scholar
  25. Lange BM, Croteau R (1999) Genetic engineering of essential oil production in mint. Curr Opin Plant Biol 2:139–144CrossRefPubMedGoogle Scholar
  26. Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339CrossRefGoogle Scholar
  27. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373CrossRefPubMedGoogle Scholar
  28. Maier W, Peipp H, Schmidt J, Wray V, Strack D (1995) Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiol 109:465–470CrossRefPubMedPubMedCentralGoogle Scholar
  29. Miele M, Dondero R, Ciarallo G, Mazzei M (2001) Methyleugenol in Ocimum basilicum L. cv. Genovese Gigante. J Agric Food Chem 49:517–521CrossRefPubMedGoogle Scholar
  30. Mondello L, Zappia G, Cotroneo A, Bonaccorsi I, Chowdhury JU, Yusuf M, Dugo G (2002) Studies on the essential oil-bearing plants of Bangladesh. Part VIII. Composition of some Ocimum oils O. basilicum L. var. purpurascens; O. sanctum L. green; O. sanctum L. purple; O. americanum L., citral type; O. americanum L., camphor type. Flavour Fragr J 17:335–340CrossRefGoogle Scholar
  31. Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251CrossRefGoogle Scholar
  32. Mucciarelli M, Scannerini S, Bertea C, Maffei M (2003) In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol 158:579–591CrossRefGoogle Scholar
  33. Napierale-Filipiak A, Werner A, Mardarowicz M, Gawdzik J (2002) The effects of heavy metals, content of nutrients and inoculation with mycorrhizal fungi on the level of terpenoids in roots of Pinus sylvestris seedlings. Acta Physiol Plant 24:137–143CrossRefGoogle Scholar
  34. Nemec S, Lund E (1990) Leaf volatiles of mycorrhizal and non-mycorrhizal Citrus Jambhiri Lush. J Essent Oil Res 2:287–297CrossRefGoogle Scholar
  35. Pascual-Villalobos MJ, Ballesta-Acosta MC (2003) Chemical variation in an Ocimum basilicum germplasm collection and activity of the essential oils on Callosobruchus maculatus. Biochem Syst Ecol 31:673–679CrossRefGoogle Scholar
  36. Simon JE, Quinn J, Murray RG (1990) Basil: a source of essential oils. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, OR, pp 484–489Google Scholar
  37. Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z (1999) Basil: a source of aroma compounds and a popular culinary and ornamental herb. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, pp 499–505Google Scholar
  38. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, LondonGoogle Scholar
  39. Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.) as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35CrossRefGoogle Scholar
  40. Trotta A, Varese GC, Gnavi E, Fusconi A, Sampò S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209CrossRefGoogle Scholar
  41. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221Google Scholar
  42. Tsuro M, Inoue M, Kameoka H (2001) Variation in essential oil components in regenerated lavender (Lavandula vera DC) plants. Sci Hortic 88:309–317CrossRefGoogle Scholar
  43. Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig-Müller J (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146:343–352CrossRefGoogle Scholar
  44. Voirin B, Bayet C (1996) Developmental changes in the monoterpene composition of Mentha piperita leaves from individual peltate trichomes. Phytochemistry 43:573–580CrossRefGoogle Scholar
  45. Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21:571–578CrossRefPubMedGoogle Scholar
  46. Wan J, Wilcock A, Covertry MJ (1998) The effect of essential oil of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. J Appl Microbiol 84:152–158CrossRefPubMedGoogle Scholar
  47. Weiss M, Mikolajewski S, Peipp H, Schmidt J, Wray V, Strack D (1997) Tissue-specific and development-dependent accumulation of phenylpropanoids in larch mycorrhizas. Plant Physiol 114:15–27CrossRefPubMedPubMedCentralGoogle Scholar
  48. Werker E, Putievsky E, Ravid U, Dudai N, Katzir I (1993) Glandular hairs and essential oil in developing leaves of Ocimum basilicum L. (Lamiaceae). Ann Bot (Lond) 71:43–50CrossRefGoogle Scholar
  49. Werner A, Napierala-Filipiak A, Mardarowicz M, Gawdzik J (2004) The effect of two substrates differing in the amount of toxic metals and nutrients on the content of volatile organic compounds in root of Pinus sylvestris. Acta Physiol Plant 26:187–196CrossRefGoogle Scholar
  50. Zhu HH, Yao Q (2004) Localized and systematic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Dipartimento di Scienze dell’Ambiente e della VitaUniversità del Piemonte Orientale “Amedeo Avogadro”AlessandriaItaly

Personalised recommendations