, Volume 16, Issue 3, pp 197–206 | Cite as

Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps

  • Roland BaierEmail author
  • Jan Ingenhaag
  • Helmut Blaschke
  • Axel Göttlein
  • Reinhard Agerer
Original Paper


The vertical niche differentiation of genera of ectomycorrhiza (ECM) was assessed in a 17-year-old Norway spruce (Picea abies [L.] Karst.) plantation on a mountainous dolomitic site (1,050 m above sea level) of the Bavarian Limestone Alps. We determined ECM anatomotypes, recorded the abundance of corresponding ECM root tips and classified them into groups of ECM exploration types, which refer to the organisation and the extent of their extramatrical mycelia. The abundance of ECM was highest in the organic soil layers, compared to the mineral soil horizon. The ordination of the ECM communities and of the exploration types revealed segregation related to soil horizon properties. While Cenococcum geophilum preferred the organic soil layers, Lactarius spp., Tomentella spp. and Craterellus tubaeformis were generally most abundant in the mineral soil horizons. Cenococcum geophilum was the predominant species, possibly based on enhanced competitiveness under the prevailing site conditions. The short-distance exploration types (e.g. C. geophilum) preferentially colonised the organic soil layer, whereas the contact types (e.g. most of the Tomentella spp., C. tubaeformis) together with medium-distance types (e.g. Amphinema byssoides) were primarily associated with the underlying A-horizons. Therefore, the soil horizons had an important effect on the distribution of ECM and on their community structure. The spatial niche differentiation of ECM genera and exploration types is discussed in regard to specific physico-chemical properties of soil horizon and the assumed ecophysiological strategies of ECM.


Picea abies Ectomycorrhizae Exploration types Limestone Alps Anatomotypes Morphotypes 



The project B63 was financed by the Bavarian Ministry of Forestry and Agriculture. The authors would like to thank Daniel Glaser, Christine Pfab and Rita Heibl for excellent field work and laboratory measurements. Last but not least the authors wish to thank the two anonymous reviewers for their useful comments, as well as Mrs. Dr. Jacquie van der Waals for the language editing of the manuscript.


  1. Abuzinadah RA, Read DJ (1989) Carbon transfer associated with assimilation of organic nitrogen sources by silver birch (Betula pendula Roth). Trees 3(1):17–23CrossRefGoogle Scholar
  2. Agerer R (1987) Colour atlas of ectomycorrhizae. Einhorn, Schwäbisch GmündGoogle Scholar
  3. Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Methods in microbiology, vol 23. Academic, London, pp 26–73Google Scholar
  4. Agerer R (2001) Exploration types of ectomycorrhizae — a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  5. Agerer R (2002) A proposal to encode ectomycorrhizae for ecological studies. In: Agerer R (ed) Colour atlas of ectomycorrhizae, 12th delivery. Einhorn, Schwäbisch Gmünd, pp 57i–62iGoogle Scholar
  6. Agerer R, Göttlein A (2003) Correlations between projection area of ectomycorrhizae and H2O extractable nutrients in organic soil layers. Mycol Prog 2(1):45–52CrossRefGoogle Scholar
  7. Agerer R, Schloter M, Hahn C (2000) Fungal enzymatic activity in fruitbodies. Nova Hedwig 71(3–4):315–336Google Scholar
  8. Agerer R, Grote R, Raidl S (2002) The new method ‘micromapping’, a means to study species-specific associations and exclusions of ectomycorrhizae. Mycol Prog 1(2):155–166CrossRefGoogle Scholar
  9. Baier R (2004) Ernährungszustand und mögliche Anpassungsmechanismen der Fichte (Picea abies [L.] Karst. ) auf Dolomitstandorten der Bayerischen Kalkalpen — Ergebnisse eines Düngeversuches an jungen Schutzwaldsanierungspflanzen. Schw Z Forstwes 155(9):378–391CrossRefGoogle Scholar
  10. Bayerisches Geologisches Landesamt (1967) Erläuterungen zur Geologischen Karte von Bayern 1:25 000, Blatt Nr. 8240 Marquartstein. Bayerisches Geologisches Landesamt, MünchenGoogle Scholar
  11. Bayerisches Geologisches Landesamt (1981) Erläuterungen zur Geologischen Karte von Bayern 1:500 000. Bayerisches Geologisches Landesamt, MünchenGoogle Scholar
  12. Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101(11):1348–1354CrossRefGoogle Scholar
  13. BMELF, Bundesminister für Ernährung, Landwirtschaft und Forsten (ed) (1990) Bundesweite Bodenzustandserfassung im Wald — Arbeitsanleitung. BonnGoogle Scholar
  14. Bochter R, Neuerburg W, Zech W (1981) Humus und Humusschwund im Gebirge. Nationalpark Berchtesgaden, Forschungsberichte 2Google Scholar
  15. Brand F (1991) Ektomykorrhizen an Fagus sylvatica. Charakterisierung und Identifizierung, ökologische Kennzeichnung und unsterile Kultivierung. Libri Botanici 2:1–229Google Scholar
  16. Brand F, Taylor AFS, Agerer R (1992) Quantitative Erfassung bekannter Ektomykorrhizen in Fichtenversuchsflächen nach Behandlung mit saurer Beregnung und Kalkung. Bericht BMFT-Projekt Nr. 0339175FGoogle Scholar
  17. Brownlee C, Duddridge JA, Malibani A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming interplant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443CrossRefGoogle Scholar
  18. Buol SW, Hole FD, McCracken RJ, Soutard RJ (1997) Soil genesis and classification. Iowa State University Press, AmesGoogle Scholar
  19. Cairney JWG, Chambers SM (eds) (1999) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Cline ET, Ammirati JF, Edmonds RL (2005) Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol 166:993–1009CrossRefPubMedGoogle Scholar
  21. Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562CrossRefGoogle Scholar
  22. Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335CrossRefGoogle Scholar
  23. Dickie IA, Xu X, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535CrossRefGoogle Scholar
  24. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature (Lond) 287:834–836CrossRefGoogle Scholar
  25. Eaton GK, Ayres MP (2002) Plasticity and constraint in growth and protein mineralization of ectomycorrhizal fungi under simulated nitrogen deposition. Mycologia 94(6):921–932CrossRefGoogle Scholar
  26. Enders G (1979) Theoretische Topoklimatologie. Nationalpark Berchtesgaden, Forschungsberichte 1Google Scholar
  27. Erland S, Taylor AFS (2002) Diversity of ectomycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 163–193Google Scholar
  28. Ewald J (1997) Bergmischwälder der Bayerischen Alpen— Soziologie, Standortsbindung und Verbreitung. J-Cramer, BerlinGoogle Scholar
  29. Fliri F (1975) Das Klima der Alpen im Raume Tirols. Monograph. Z. Landeskde. Tirols, InnsbruckGoogle Scholar
  30. Fransson PMA, Taylor AFS, Finlay RD (2000) Effects of optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiol 20:599–606PubMedGoogle Scholar
  31. Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133PubMedCrossRefGoogle Scholar
  32. Göbl F, Thurner S (1996) Evaluation of forest sites by means of condition assessment of mycorrhizae and fine roots. Phyton (Horn) 36(4):95–108Google Scholar
  33. Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153(4):352–354CrossRefGoogle Scholar
  34. Haupolter M (1999) Zustand von Bergwäldern in den nördlichen Kalkalpen Tirols und daraus ableitbare Empfehlungen für eine nachhaltige Bewirtschaftung. Diss. Univ. f. Bodenkultur, WienGoogle Scholar
  35. Hedin LO, Armesto JJ, Johnson AH (1995) Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76(2):493–509CrossRefGoogle Scholar
  36. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  37. Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum part I. Herbaria of the world, 8th edn. Regnum Vegetabile 120. New York Botanical Garden, New YorkGoogle Scholar
  38. Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871CrossRefPubMedGoogle Scholar
  39. Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630CrossRefPubMedGoogle Scholar
  40. Jany JL, Martin F, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius spec. in relation to soil water potential in five beech forests. Plant Soil 255(2):487–494CrossRefGoogle Scholar
  41. Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422CrossRefGoogle Scholar
  42. Jongman RHG, ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. University Press, CambridgeGoogle Scholar
  43. Jonsson L, Dahlberg A, Brandrud T-E (2000) Spatiotemporal distribution of an ectomycorrhizal community in an oligotroph Swedish Picea abies forest subjected to experimental nitrogen addition: above- and below-ground views. For Ecol Manag 132:143–156CrossRefGoogle Scholar
  44. Kårén O, Högberg N, Dahlberg A, Grip K, Nylund J-E (1996) Influence of drought on ectomycorrhizal species composition — morphotype versus PCR identification. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. European Commission, Brussels, pp 43–46Google Scholar
  45. Katzensteiner K (2003) Effects of harvesting on nutrient leaching in a Norway spruce (Picea abies Karst.) ecosystem on a lithic leptosol in the Northern Limestone Alps. Plant Soil 250:59–73CrossRefGoogle Scholar
  46. Kottke I, Oberwinkler F (1988) Vergleichende Untersuchung der Feinwurzelsysteme und der Anatomie von Mycorrhizen nach Trockenstreß und Düngemaßnahmen. KfK-PEF 39Google Scholar
  47. Kuyper TW, Landeweert R (2002) Vertical niche differentiation by hyphae of ectomycorrhizal fungi in soil. New Phytol 156:321–326CrossRefGoogle Scholar
  48. Landeweert R, Leeflang P, Smit E, Kuyper T (2005) Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach. Mycorrhiza 15(1):1–6CrossRefPubMedGoogle Scholar
  49. Liu JC, Keller T, Runkel KH, Payer HD (1994) Bodenkundliche Untersuchungen zu Ursachen des Nadelverlustes der Fichten (Picea abies [L.] Karst.) auf Kalkstandorten der Alpen. Forstwiss Cent bl 113:86–100CrossRefGoogle Scholar
  50. Lozan JL, Kausch H (2004) Angewandte Statistik für Naturwissenschaftler. Wissenschaftliche Auswertungen, HamburgGoogle Scholar
  51. Lüscher F (1990) Untersuchung zur Höhenentwicklung der Fichtennaturverjüngung im inneralpinen Gebirgswald. Ph.D. thesis, ETH Zürich Nr. 8879Google Scholar
  52. Marschner H (1995) Mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  53. McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  54. Meister G (1969) Ziele und Ergebnisse forstlicher Planung im oberbayerischen Hochgebirge. Forstwiss Cent bl 88:97–130CrossRefGoogle Scholar
  55. Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151CrossRefGoogle Scholar
  56. Pigott CD (1982) Survival of mycorrhiza formed by Cenococcum geophilum Fr. in dry soils. New Phytol 92:513–517CrossRefGoogle Scholar
  57. Ponge JF (1990) Ecological study of a forest humus by observing a small volume I. Penetration of pine litter by mycorrhizal fungi. Eur J For Pathol 20:290–303CrossRefGoogle Scholar
  58. Read DJ (1995) Ectomycorrhizas in the ecosystem: structural, functional and community aspects. In: Stocchi V, Bonfante P, Nuti M (eds) Biotechnology of ectomycorrhizae: molecular approaches. Plenum, New York, pp 1–23Google Scholar
  59. Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352CrossRefGoogle Scholar
  60. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  61. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263CrossRefGoogle Scholar
  62. Sandhage-Hofmann A (1993) Wachstum und Nährstoffversorgung von Feinwurzeln unterschiedlich geschädigter Fichten auf Böden aus Kalkgestein (Wank-Massiv). Abschlußbericht, Lehrstuhl für Bodenkunde und Bodengeographie, Universität BayreuthGoogle Scholar
  63. Scheffer-Schachtschabel (2002) Lehrbuch der Bodenkunde. Enke, StuttgartGoogle Scholar
  64. Sittig U (1999) Zur saisonalen Dynamik von Ektomykorrhizen der Buche (Fagus sylvatica L.) Ber Forschungszentrums Waldökosysteme, Reihe A, Bd. 162Google Scholar
  65. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  66. Tamm CO (1991) Nitrogen in terrestrial ecosystems. Ecological studies 81. Springer, Berlin Heidelberg New YorkGoogle Scholar
  67. Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28CrossRefGoogle Scholar
  68. Tedersoo L, Koljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165CrossRefGoogle Scholar
  69. Trojanowski J, Haider K, Hüttermann A (1984) Decomposition of 14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139(2–3):202–206CrossRefGoogle Scholar
  70. Urban A, Weiß M, Bauer R (2003) Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 107(1):3–14CrossRefPubMedGoogle Scholar
  71. van der Heijden EW, Sanders IR (eds) (2002) Mycorrhizal ecology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  72. Vogt KA, Edmonds RL, Grier CC (1981) Dynamics of ectomycorrhizae in Abies amabilis stands: the role of Cenococcum graniforme. Holarct Ecol 4:167–173Google Scholar
  73. Worley JF, Hacskaylo E (1959) The effect of available soil moisture on the mycorrhizal association of Virginia pine. For Sci 5(3):267–268Google Scholar
  74. Zierhut M (2003) Die Geschichte der Traunsteiner Salinenwälder. Forstliche Forschungsberichte, München 194Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Roland Baier
    • 1
    • 4
    Email author
  • Jan Ingenhaag
    • 2
  • Helmut Blaschke
    • 3
  • Axel Göttlein
    • 1
  • Reinhard Agerer
    • 2
  1. 1.Department of Ecology, Forest Nutrition and Water ResourcesTechnische Universität MünchenFreisingGermany
  2. 2.Faculty of Biology, Department of Biology I, Mycological BiodiversityLudwig-Maximilians-Universität MünchenMünchenGermany
  3. 3.Department of Ecology, Plant EcophysiologyTechnische Universität MünchenFreisingGermany
  4. 4.Fachgebiet Waldernährung und WasserhaushaltFreisingGermany

Personalised recommendations