Mycorrhiza

, Volume 15, Issue 8, pp 580–588

Presence of arbuscular mycorrhizal fungi in South Florida native plants

Original Paper

Abstract

The roots of 27 species of South Florida plants in 15 families (including one cycad, six palms, one Smilax, and 19 dicotyledons) native to pine rockland and tropical hardwood hammock communities were examined for arbuscular mycorrhizal fungi (AMF). These plants grow in the biologically diverse but endangered Greater Everglades habitat. Roots from field-grown and potted plants were cleared and stained. All 27 species had AMF and include 14 species having an endangered or threatened status. The Paris-type colonization occurred in two species in the families Annonaceae and Smilacaceae. The Arum-type occurred in 22 species in the families Anacardiaceae, Arecaceae (Palmae), Boraginaceae, Cactaceae (questionable), Euphorbiaceae, Fabaceae, Lauraceae, Melastomataceae, Polygalaceae, Rubiaceae, Simaroubaceae, Ulmaceae, and Zamiaceae. Three species in the families Fabaceae, Lauraceae, and Simaroubaceae had a mix of Paris- and Arum-types. The results have implications for the restoration of these endangered plant communities in the Everglades.

Keywords

Arbuscular mycorrhizae Arum-type Cycad Endangered plants Everglades restoration Palms Paris-type 

References

  1. Ahulu EM, Nakata M, Nonaka M (2005) Arum- and Paris-type arbuscular mycorrhizas in a mixed pine forest on sand dune soil in Niigata prefecture, central Honshu, Japan. Mycorrhiza 15:129–136CrossRefPubMedGoogle Scholar
  2. Allen EB, Rincón E, Allen MF, Pérez-Jimenez A, Huante P (1998) Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30:261–274CrossRefGoogle Scholar
  3. Aziz T, Sylvia DM, Doren RF (1995) Activity and species composition of arbuscular mycorrhizal fungi following soil removal. Ecol Appl 5:776–784CrossRefGoogle Scholar
  4. Barredo-Pool F, Varela L, Arce-Montoya M, Orellana R (1998) Estudio de la asociación micorrízica en dos Cactáceas natives del Estado de Yucatán, México. In: Zulueta Rodríguez R, Escalona Aguilar MA, Trejo Aguilar D (eds) Avances de la investigación micorrízica en México. Universidad Veracruzana, Xalapa, Mexico, pp 69–76Google Scholar
  5. Bedini S, Maremmani A, Giovannetti M (2000) Paris-type mycorrhizas in Smilax aspera L. growing in a Mediterranean sclerophyllous wood. Mycorrhiza 10:9–13CrossRefGoogle Scholar
  6. Bray RH, Kurtz LT (1949) Determination of total, organic and available form of phosphorus in soil. Soil Sci 59:39–45CrossRefGoogle Scholar
  7. Brundrett MC, Abbott LK (1991) Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Aust J Bot 39:445–457CrossRefGoogle Scholar
  8. Brundrett M, Kendrick B (1990) The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol 114:469–479CrossRefGoogle Scholar
  9. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph Series, Canberra, Australia, p 374Google Scholar
  10. Carrillo-Garcia A, León de la Luz J-L, Bashan Y, Bethlenfalvay GJ (1999) Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor Ecol 7:321–335CrossRefGoogle Scholar
  11. Cavagnaro TR, Gao L-L, Smith FA, Smith SE (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469–475CrossRefGoogle Scholar
  12. Coile NC, Garland MA (2003) Notes on Florida’s endangered and threatened plants. Florida Department of Agriculture and Consumer Services, Bureau of Entomology, Nematology, and Plant Pathology–Botany Section, Contrib. No. 38, 4th edn., Gainesville, FL (digital version: http://www.virtualherbarium.org)
  13. Dickson S (2004) The ArumParis continuum of mycorrhizal symbioses. New Phytol 163:187–200CrossRefGoogle Scholar
  14. Drew EA, Murray RS, Smith SE, Jakobsen I (2003) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore size. Plant Soil 251:105–114CrossRefGoogle Scholar
  15. Fisher JB, Jayachandran K (1999) Root structure and arbuscular mycorrhizal colonization of the palm Serenoa repens under field conditions. Plant Soil 217:229–241CrossRefGoogle Scholar
  16. Fisher JB, Jayachandran K (2002) Arbuscular mycorrhizal fungi enhance seedling growth in two endangered plant species from south Florida. Int J Plant Sci 163:559–566CrossRefGoogle Scholar
  17. Fisher JB, Vovides AP (2004) Mycorrhizae are present in cycad roots. Bot Rev 70:16–23CrossRefGoogle Scholar
  18. Fitter AH (2004) Magnolioid root-hairs, architecture and mycorrhizal dependency. New Phytol 164:15–16CrossRefGoogle Scholar
  19. Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277–281CrossRefPubMedGoogle Scholar
  20. Gemma JN, Koske RE, Habte H (2002) Mycorrhizal dependency of some endemic and endangered Hawaiian plant species. Am J Bot 89:337–345Google Scholar
  21. Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344CrossRefGoogle Scholar
  22. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24CrossRefGoogle Scholar
  23. Jayachandran K, Shetty KG (2003) Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquat Bot 76:281–290CrossRefGoogle Scholar
  24. Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184PubMedCrossRefGoogle Scholar
  25. Koske RE, Gemma JN (1995) Vesicular-arbuscular mycorrhizal inoculation of Hawaiian plants: a conservation technique for endangered tropical species. Pac Sci 49:181–191Google Scholar
  26. Kubota M, McGonigle TP, Hyakumachi M (2005) Co-occurrence of Arum- and Paris-type morphologies of arbuscular mycorrhizae in cucumber and tomato. Mycorrhiza 15:73–77CrossRefPubMedGoogle Scholar
  27. Liu R, Wang F (2003) Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza 13:123–127CrossRefPubMedGoogle Scholar
  28. Maremmani A, Bedini S, Matoševic I, Tomai PE, Giovannetti M (2003) Type of mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza 13:33–40PubMedCrossRefGoogle Scholar
  29. Meador RE (1977) The role of mycorrhizae in influencing succession on abandoned Everglades farmland. MS thesis, University of Florida, Gainesville, FLGoogle Scholar
  30. Olsen SR, Summers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. 2nd edn. Agronomy 9:303–430Google Scholar
  31. Olsson PA, Jakobsen I, Wallander H (2002) Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 93–115Google Scholar
  32. Pattinson GS, Hammill KA, Sutton BG, McGee PA (2004) Growth and survival of seedlings of native plants in an impoverished and highly disturbed soil following inoculation with arbuscular mycorrhizal fungi. Mycorrhiza 14:339–346CrossRefPubMedGoogle Scholar
  33. Pimienta-Barrios E, Pimienta-Barrios E, Salas-Galván ME, Zañudo-Hernandez J, Nobel PS (2002) Growth and reproductive characteristics of the columnar cactus Stenocereus queretaroensis and their relationship with environmental factors and colonization by arbuscular mycorrhizae. Tree Physiol 22:667–674PubMedGoogle Scholar
  34. Pimienta-Barrios E, Gonzalez del Castillo-Aranda ME, Muñoz-Urias A, Nobel PS (2003) Effects of Benomyl and drought on the mycorrhizal development and daily net CO2 uptake of a wild platyopuntia in a rocky semi-arid environment. Ann Bot 92:239–245CrossRefPubMedGoogle Scholar
  35. Rincón E, Huante P, Ramírez Y (1993) Influence of vesicular-arbuscular mycorrhizae on biomass production by the cactus Pachycereus pectin-aboriginum. Mycorrhiza 3:79–81CrossRefGoogle Scholar
  36. Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 415–437Google Scholar
  37. Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relationships of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174PubMedCrossRefGoogle Scholar
  38. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, CAGoogle Scholar
  39. Smith FA, Smith SE (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. Tansley Review No. 96. New Phytol 137:373–388CrossRefGoogle Scholar
  40. Sylvia DM, Jarstfer AG, Vostátka M (1993) Comparisons of vesicular-arbuscular mycorrhizal species and inocula formulations in a commercial nursery and on diverse Florida beaches. Biol Fertil Soils 16:139–144CrossRefGoogle Scholar
  41. U.S. Fish and Wildlife Service (1999) South Florida multi-species recovery plan. Atlanta, GAGoogle Scholar
  42. Wubet T, Kottke I, Teketay D, Oberwinkler F (2003) Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. For Ecol Manag 179:387–399CrossRefGoogle Scholar
  43. Wunderlin RP, Hansen BF (2000) Flora of Florida. Vol 1. Pteridopytes and Gymnosperms. University Press of Florida, GainesvilleGoogle Scholar
  44. Yamato M (2004) Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza 14:127–131CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Fairchild Tropical Botanic GardenCoral GablesUSA
  2. 2.Department of Biological SciencesFlorida International UniversityMiamiUSA
  3. 3.Department of Environmental Studies, Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  4. 4.The Honors CollegeFlorida International UniversityMiamiUSA

Personalised recommendations