, Volume 15, Issue 6, pp 471–482 | Cite as

Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period

  • Miriam de RománEmail author
  • Ana María de Miguel
Original Paper


Two study plots, burned and control, were established in autumn 1998 in a Quercus ilex forest located in northern Spain, part of which had been affected by a low intensity fire in 1994. Soil samples for ectomycorrhizae (ECM) were taken over a 3-year period in each study plot in spring, summer, autumn and winter. ECM morphotypes were identified and the relative abundance of each morphotype in each soil sample calculated, along with species richness, Shannon diversity index and percentage of mycorrhization in each soil sample. The relative abundance of certain ECM morphotypes differed between burned and control plots, and the percentage of mycorrhizal tips was significantly lower in the burned than in the control plot. Nevertheless, there were no significant differences in the diversity, species richness or species composition of the ECM community in the burned and control plots. The dominant ECM morphotypes in both stands were Cenococcum geophilum and several thelephoroid fungi. Sphaerosporella brunnea and Pisolithus tinctorius thrived especially in the burned plot, whereas three ectomycorrhizal morphotypes assigned to the genus Hebeloma were especially abundant in the control plot. There was no significant variation in the relative abundance of the ECM morphotypes between seasons, but ECM community species richness was highest in autumn and lowest in summer. The percentage of mycorrhizal tips reached a maximum in winter, with its minimum in autumn. Collection of samples over the 3-year period also enabled us to detect a significant increase in percentage of ECM colonisation in the burned stand over time.


Ectomycorrhizae Quercus ilex Post-fire dynamics Seasonal variation Annual variation 



This research was supported by a Ph.D. grant from the Spanish Instituto Nacional de Investigaciones Agrarias y Alimentarias and by two projects funded by Gobierno de Navarra and PIUNA. We would also like to thank Steve Woodward for revising the manuscript and two anonymous referees for their useful comments.


  1. Abourouh M, Najim L (1995) Les différents types d’ectomycorhizes naturelles de Cedrus atlantica Manetti au Maroc. Cryptogam Bot 5:332–340Google Scholar
  2. Agerer R (1986) Studies on Ectomycorrhizae II. Introducing remarks on characterization and identification. Mycotaxon 26:473–492Google Scholar
  3. Agerer R (1987–2002) Colour atlas of ectomycorrhizae. Einhorn-Verlag, MunichGoogle Scholar
  4. Agerer R (1990a) Studies on ectomycorrhizae XXIV. Ectomycorrhizae of Chroogomphus helveticus and C. rutilus (Gomphidiaceae, Basidiomycetes) and their relationship to those of Suillus and Rhizopogon. Nova Hedwig 50(1–2):1–63Google Scholar
  5. Agerer R (1990b) Chroogomphus helveticus ssp. tatrensis. In: Agerer R (ed) Colour atlas of ectomycorrhizae, plate 37. Einhorn Verlag, Schwäbisch GmündGoogle Scholar
  6. Agerer R (1994) Characterization of ectomycorrhizas. In: Norris JR, Read D, Varma AK (eds) Techniques for mycorrhizal research. (Methods in Microbiology, vol 23). Academic Press, London, pp 25–73Google Scholar
  7. Agerer R (1999) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza. Structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 633–682Google Scholar
  8. Agerer R, Gronbach E (1988) Cenococcum geophilum. In: Agerer R (ed) Colour atlas of ectomycorrhizae, plate 11. Einhorn Verlag, Schwäbisch GmündGoogle Scholar
  9. Al Sayegh-Petkovsek S, Kraigher H (2000) Types of ectomycorrhizae from Kocevska Reka. Phyton-Annales Rei Botanicae 40(4):37–42Google Scholar
  10. Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, CambridgeGoogle Scholar
  11. Arbevy AS, Granhall U (1998) Occurrence and succession of mycorrhizas in Alnus incana. Swed J Agric Res 28:117–127Google Scholar
  12. Azul AM, Freitas H (1999) Mycorrhizal fungi and their application to forestation programmes with cork oak (Quercus suber L.). In: Micorrización en áreas mediterráneas de la Península Ibérica. Junta de Extremadura, Badajoz, pp 75–82Google Scholar
  13. Baar J, Kuyper TW (1998) Restoration of aboveground ectomycorrhizal flora in stands of Pinus sylvestris (Scots Pine) in the Netherlands by removal of litter and humus. Restor Ecol 6(3):227–237CrossRefGoogle Scholar
  14. Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143:409–418CrossRefGoogle Scholar
  15. Barbour MG, Burk JH, Pitts WD, William FS, Schwartz MW (1999) Terrestrial plant ecology, 3rd edn. Benjamin/Cummings, CaliforniaGoogle Scholar
  16. Baxter JW, Pickett STA, Carreiro MM, Dighton J (1999) Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Can J Bot 77:771–782CrossRefGoogle Scholar
  17. Bencivenga M, Di Massimo G, Donnini D, Tanfulli M (1995) Micorrize inquinanti frequenti nelle piante tartufigene. Nota 1—Inquinanti in vivaio. Micol Ital 2:167–178Google Scholar
  18. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32, Canberra, pp 374Google Scholar
  19. Castell C, Terradas J (1993) Ecofisiología de la encina (Quercus ilex) en la Serra de Collserola (Barcelona). Diferencias entre rebrotes e individuos adultos. In: Actas del I Congreso Forestal Español, Lourizán 1993. Ponencias y Comunicaciones, Tomo 1, pp 233–238Google Scholar
  20. Castellano MA (1996) Outplanting performance of mycorrhizal inoculated seedlings. In: Mukerji KG (ed) Concepts in mycorrhizal research. Handbook of vegetation science, vol 19/2. Kluwer Academic Publishers, Dordrecht, pp. 223–301Google Scholar
  21. Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562CrossRefGoogle Scholar
  22. Dahlberg A (2002) Effects of fire on ectomycorrhizal fungi in fennoscandian boreal forests. Silva Fenn 36(1):69–80Google Scholar
  23. Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in South Sweden. Can J Bot 75:1323–1335Google Scholar
  24. Dahlberg A, Schimmel J, Taylor AFS, Johannesson H (2001) Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biol Conserv 100:151–161CrossRefGoogle Scholar
  25. Danielson RM (1984a) Ectomycorrhiza formation by the operculate discomycete Sphaerosporella brunnea (Pezizales). Mycologia 76:454–461Google Scholar
  26. Danielson RM (1984b) Ectomycorrhizal associations in jack pine stands in northeastern Alberta. Can J Bot 62:932–939Google Scholar
  27. De Miguel AM, De Román M, Etayo ML (2001) Mycorrhizal fungi competing with Tuber melanosporum Vitt. in cultivated truffle beds in northeastern Spain. In: Proceedings of the Second International Conference on Edible Mycorrhizal Mushrooms, Christchurch, New Zealand. CD-ROMGoogle Scholar
  28. De Román M, Agerer R, De Miguel AM (2002) “Quercirhiza cumulosa” + Quercus ilex L. subsp. ballota (Desf.) Samp. Descr Ectomycorrhizae 6:13–18Google Scholar
  29. Durall DM, Jones MD, Wright EF, Kroeger P, Coates KD (1999) Species richness of ectomycorrhizal fungi in cuttblocks of different sizes in the interior Cedar–Hemlock forests of northwestern British Columbia: sporocarps and ectomycorrhizae. Can J For Res 29(9):1322–1332CrossRefGoogle Scholar
  30. Erland S, Jonsson T, Mahmood S, Finlay RD (1999) Below-ground mycorrhizal community structure in two Picea abies forests in southern Sweden. Scand J For Res 14:209–217CrossRefGoogle Scholar
  31. García G (2001) Aproximación a las dinámicas poblacionales de las ectomicorrizas de los ecosistemas forestales ibéricos. Montes 63:5–15Google Scholar
  32. Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583Google Scholar
  33. Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79(5):1562–1572Google Scholar
  34. Giraud M (1988) Prélèvement et analyse de mycorhizes. In: CTIFL (ed) La truffe. FNPT 10. Congrès de la trufficulture, Saintes, 27–28 novembre 1987, pp 49–63Google Scholar
  35. Golldack J, Münzenberger B, Hüttl R (1999) “Pinirhiza dimorpha” + Pinus sylvestris L. Descr Ectomycorrhizae 4:73–78Google Scholar
  36. Goodman DM, Trofymow JA (1998) Comparison of communities of ectomycorrhizal fungi in old-growth and mature stands of Douglas fir at two sites on Southern Vancouver Island. Can J For Res 28:574–581CrossRefGoogle Scholar
  37. Granetti B (1995) Caratteristiche morfologiche, biometriche e strutturali delle micorrize di Tuber di interesse economico. Micol Ital 2:101–117Google Scholar
  38. Granetti B, Baciarelli Falini L (1997) Competizione tra le micorrize di Tuber melanosporum Vitt. e quelle di altri funghi in una tartufaia coltivata a Quercus ilex L. Micol Ital 3:45–59Google Scholar
  39. Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88:1051–1062CrossRefGoogle Scholar
  40. Gupta V, Satyanarayana T, Garg S (2000) General aspects of mycorrhiza. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic/Plenum Publishers, New York, pp 27–44Google Scholar
  41. Hagerman SM, Jones MD, Bradfield GE, Gillespie M, Durall DM (1999) Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can J For Res 29:124–134CrossRefGoogle Scholar
  42. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  43. Hill MO, Gauch HG (1980) Detrended correspondence analysis, an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  44. Horton TR, Bruns TD (1998) Multiple host-fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339CrossRefGoogle Scholar
  45. Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871CrossRefPubMedGoogle Scholar
  46. Horton TR, Cázares E, Bruns TD (1998) Ectomycorrhizal, vesicular–arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first months of growth after wildfire. Mycorrhiza 8:11–18CrossRefGoogle Scholar
  47. Jakucs E, Agerer R (1999) Tomentella pilosa (Burt) Bourdot & Galzin+Populus alba L. Descr Ectomycorrhizae 4:135–140Google Scholar
  48. Jakucs E, Bratek Z (1998) Genea verrucosa. In: Agerer R (ed) Colour atlas of ectomycorrhizae, plate 120. Einhorn Verlag, Schwäbisch GmündGoogle Scholar
  49. Jakucs E, Agerer R, Bratek Z (1997) “Quercirhiza fibulocystidiata”+Quercus spec. Descr Ectomycorrhizae 2:67–71Google Scholar
  50. Jakucs E, Bratek Z, Agerer R (1998a) Genea verrucosa Vitt. + Quercus spec. Descr Ectomycorrhizae 3:7–11Google Scholar
  51. Jakucs E, Agerer R, Bratek Z (1998b) Quercirhiza fibulocystidiata. In: Agerer R (ed) Colour atlas of ectomycorrhizae, plate 132. Einhorn Verlag, Schwäbisch GmündGoogle Scholar
  52. Jonsson L, Dahlberg A, Nilsson MC, Zackrisson O, Karen O (1999) Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Mol Ecol 8:205–215CrossRefGoogle Scholar
  53. Kõljalg U, Jakucs E, Bóka K, Agerer R (2001) Three ectomycorrhiza with cystidia formed by different Tomentella species as revealed by rDNA ITS sequences and anatomical characteristics. Folia Cryptogam Est 38:27–39Google Scholar
  54. Kranabetter JM, Hayden S, Wright EF (1999) A comparison of ectomycorrhiza communities from three conifer species planted on forest gap edges. Can J Bot 77:1193–1198CrossRefGoogle Scholar
  55. Launonen TM, Ashton DH, Keane PJ (1999) The effect of regeneration burns on the growth, nutrient acquisition and mycorrhizae of Eucalyptus regnans F. Muell. (mountain ash) seedlings. Plant Soil 210:273–283CrossRefGoogle Scholar
  56. LoBuglio KF (1999) Cenococcum. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi. Key genera in profile. Springer, Berlin Heidelberg, New York pp 287–310Google Scholar
  57. Mah K, Tackaberry LE, Egger KN, Massicotte HB (2001) The impacts of broadcast burning after clear-cutting on the diversity of ectomycorrhizal fungi associated with hybrid spruce seedlings in central British Columbia. Can J For Res 31:224–235CrossRefGoogle Scholar
  58. Martínez de Aragón J, Bonet JA, Colinas C (2001) Potencial de inóculo micorrícico en bosques quemados de la comarca del Solsonès (Lleida) un año después del incendio . In: Actas del III Congreso Forestal Español, Granada, Mesa 6, pp 402–407Google Scholar
  59. Massicotte HB, Molina R, Tackaberry LE, Smith J, Amaranthus MP (1999) Diversity and host specificity of ectomycorrhizal fungi retrieved from three adjacent forest sites by five host species. Can J Bot 77:1053–1076CrossRefGoogle Scholar
  60. McAfee BJ, Fortin JA (1988) Comparative effects of the soil microflora on ectomycorrhizal inoculation of conifer seedlings. New Phytol 108:443–449Google Scholar
  61. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach, OR, USAGoogle Scholar
  62. Meotto F, Carraturo P (1988) Ectomicorrizia di Sphaerosporella brunnea (A. & S.) Svrcek & Kubicka in piantine tartufigene. Allionia 28:109–116Google Scholar
  63. Meotto F, Pellegrino S, Craddock JH (1994) Funghi ectomicorrizici del castagno con particolare referimento ai funghi eduli. Italus Hortus 1(2):58–64Google Scholar
  64. Mineo L, Majumdar SK (1996) Ectomycorrhizae in oaks (Quercus alba, Q. rubra) in Northeastern Pennsylvania woodlands: morphology, frequency and implied physiology and ecology. In: Mukerji KG (ed) Concepts in mycorrhizal research. Handbook of vegetation science, vol 19/2. Kluwer Academic Publishers, Dordrecht, pp 315–331Google Scholar
  65. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community–ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. An integrative plant–fungal process. Chapman & Hall, London, pp 357–423Google Scholar
  66. Pausas JG (1997) Resprouting of Quercus suber in NE Spain after fire. J Veg Sci 8:703–706Google Scholar
  67. Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151CrossRefGoogle Scholar
  68. Pigott CD (1982) Fine structure of mycorrhiza formed by Cenococcum geophilum Fr. on Tilia cordata Mill. New Phytol 92:501–512Google Scholar
  69. Purdy BG, Macdonald SE, Dale MRT (2002) The regeneration niche of white spruce following fire in the mixedwood boreal forest. Silva Fenn 36(1):289–306Google Scholar
  70. Rohlf FJ, Sokal RR (1995) Statistical tables, 3rd edn. Freeman, New York, 199 ppGoogle Scholar
  71. Sáez R, De Miguel AM (1995) La trufa negra. Tuber melanosporum Vitt. Guía práctica de truficultura. ITGA-Universidad de Navarra, Pamplona, 94 ppGoogle Scholar
  72. Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycol Res 103(10):1353–1359CrossRefGoogle Scholar
  73. Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28CrossRefGoogle Scholar
  74. Torres P, Honrubia M (1997) Changes and effects of a natural fire on ectomycorrhizal inoculum potential of soil in a Pinus halepensis forest. For Ecol Manag 96:189–196Google Scholar
  75. Trost T, Agerer R, Urbancic M, Kraigher H (1999) Biodiversity of ectomycorrhizae in a Norway spruce stand on Pokljuka. Phyton-Annales Rei Botanicae 39(4):225–232Google Scholar
  76. Urban A, Weiss M, Bauer R (2003) Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 107(1):3–14CrossRefPubMedGoogle Scholar
  77. Visser S (1995) Ectomycorrhizal fungal succession in jack pine following wildfire. New Phytol 129:389–401Google Scholar
  78. Weiss M (1991) Pisolithus tinctorius. In: Agerer R (ed) Colour atlas of ectomycorrhizae, plate 63. Einhorn Verlag, Schwäbisch GmündGoogle Scholar
  79. Weiss M (1992) Mycorrhizae formed by Pisolithus tinctorius (Basidiomycetes) on Norway spruce. Cryptogam Bot 2:337–344Google Scholar
  80. Zambonelli A, Salomoni S, Pisi A (1995) Caratterizzazione anatomo-morfologica delle micorrize di Tuber borchii, Tuber aestivum, Tuber mesentericum, Tuber brumale, Tuber melanosporum su Pinus pinea. Micol Ital 2:119–137Google Scholar
  81. Zar JH (1998) Biostatistical analysis, 4th edn. Pearson-Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Agriculture and Forestry, School of Biological SciencesUniversity of AberdeenScotlandUK
  2. 2.Department of BotanyUniversity of NavarraPamplonaSpain

Personalised recommendations