Mycorrhiza

, Volume 16, Issue 5, pp 299–363 | Cite as

Phylogenetic distribution and evolution of mycorrhizas in land plants

Review

Abstract

A survey of 659 papers mostly published since 1987 was conducted to compile a checklist of mycorrhizal occurrence among 3,617 species (263 families) of land plants. A plant phylogeny was then used to map the mycorrhizal information to examine evolutionary patterns. Several findings from this survey enhance our understanding of the roles of mycorrhizas in the origin and subsequent diversification of land plants. First, 80 and 92% of surveyed land plant species and families are mycorrhizal. Second, arbuscular mycorrhiza (AM) is the predominant and ancestral type of mycorrhiza in land plants. Its occurrence in a vast majority of land plants and early-diverging lineages of liverworts suggests that the origin of AM probably coincided with the origin of land plants. Third, ectomycorrhiza (ECM) and its derived types independently evolved from AM many times through parallel evolution. Coevolution between plant and fungal partners in ECM and its derived types has probably contributed to diversification of both plant hosts and fungal symbionts. Fourth, mycoheterotrophy and loss of the mycorrhizal condition also evolved many times independently in land plants through parallel evolution.

Keywords

Mycorrhizas Land plants Fungi Parallel evolution 

References

  1. Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367PubMedCrossRefGoogle Scholar
  2. Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant Soil 33:713–716CrossRefGoogle Scholar
  3. Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352PubMedCrossRefGoogle Scholar
  4. Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569PubMedCrossRefGoogle Scholar
  5. Bidartondo MI, Bruns TD, Weiß M, Sergio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835–842CrossRefGoogle Scholar
  6. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806CrossRefGoogle Scholar
  7. Boullard B (1988) Observations on the coevolution of fungi and hepatics. In: Pirozynski KA, Hawksworth DL (eds) Coevolution of fungi with plants and animals. Academic, London, pp 107–124Google Scholar
  8. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  9. Bruns TD, Shefferson RP (2004) Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. Can J Bot 82:1122–1132CrossRefGoogle Scholar
  10. Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am J Bot 86:208–224CrossRefGoogle Scholar
  11. Carafa A, Duckett JG, Ligrone R (2003) Subterranean gametophytic axes in the primitive liverwort Haplomitrium harbour a unique type of endophytic association with aseptate fungi. New Phytol 160:185–197CrossRefGoogle Scholar
  12. Cronquist A (ed) (1981) An integrated system of classification of flowing plants. Columbia Univ Press, New YorkGoogle Scholar
  13. Demchenko K, Winzer T, Stougaard J, Parniske M, Pawlowski K (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol 163:381–392CrossRefGoogle Scholar
  14. Dombrovska O, Qiu Y-L (2004) Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol Phylogenet Evol 32:246–263PubMedCrossRefGoogle Scholar
  15. Duckett JG, Renzaglia KS, Pell K (1991) A light and electron microscope study of rhizoid–ascomycete associations and flagelliform axes in British hepatics with observations on the effects of the fungi on host morphology. New Phytol 118:233–257CrossRefGoogle Scholar
  16. Fitter AH, Moyersoen B (1996) Evolutionary trends in root–microbe symbioses. Philos Trans R Soc Lond B 351:1367–1375CrossRefGoogle Scholar
  17. Gao C (2000) Takakiaceae. In: Yunnanica F (ed) Kunming Institute of Botany, Chinese Academy of Sciences , vol. 17, Bryophyta: Hepaticae, Anthocerotae. Science, Beijing, pp 1–2Google Scholar
  18. Gemma JN, Koske RE, Flynn T (1992) Mycorrhizae in Hawaiian pteridophytes: occurrence and evolutionary significance. Am J Bot 79:843–852CrossRefGoogle Scholar
  19. Grolle R (1983) Nomina generica Hepaticarum; references, types and synonymies. Acta Bot Fenn 121:1–62Google Scholar
  20. Groth-Malonek M, Pruchner D, Grewe F, Knoop V (2005) Ancestors of trans-spliced mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Mol Biol Evol 22:117–125PubMedCrossRefGoogle Scholar
  21. Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102CrossRefGoogle Scholar
  22. Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389PubMedCrossRefGoogle Scholar
  23. Hibbett DS, Gilbert L-B, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbiosis in basidiomycetes. Nature 407:506–508PubMedCrossRefGoogle Scholar
  24. Hickey LJ, Doyle JA (1977) Early Cretaceous fossil evidence for angiosperm evolution. Bot Rev 43:3–104CrossRefGoogle Scholar
  25. Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339CrossRefGoogle Scholar
  26. Kenrick P, Crane PR (1997) The origin and early diversification of land plants: a cladistic study. Smithsonian Institution, Washington DCGoogle Scholar
  27. Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386CrossRefGoogle Scholar
  28. Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163PubMedCrossRefGoogle Scholar
  29. Kerp H, Trewin NH, Hass H (2004) New gametophytes from the Early Devonian Rhynie chert. Trans R Soc Edinb Earth Sci 94:411–428Google Scholar
  30. Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:335–423CrossRefGoogle Scholar
  31. Leake JR (1994) The biology of mycoheterotrophic (‘saprophytic’) plants. New Phytol 127:171–216CrossRefGoogle Scholar
  32. LePage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410–412CrossRefGoogle Scholar
  33. Le Quere A, Schutzendubel A, Rajashekar B, Canback B, Hedh J, Erland S, Johansson T, Tunlid A (2004) Divergence in gene expression related to variation in host specificity of an ectomycorrhizal fungus. Mol Ecol 13:3809–3819PubMedCrossRefGoogle Scholar
  34. Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364PubMedCrossRefGoogle Scholar
  35. Ligrone R, Lopes C (1989) Cytology and development of a mycorrhiza-like infection in the gametophyte of Conocephalum conium (L.) Dum. (Marchantiales, Hepatophyta). New Phytol 111:423–433CrossRefGoogle Scholar
  36. Ligrone R, Pocock K, Duckett JG (1993) A comparative ultrastructural study of endophytic basidiomycetes in the parasitic achlorophyllous hepatic Cryptothallus mirabilis and the closely allied photosynthetic species Aneura pinguis (Metzgeriales). Can J Bot 71:666–679CrossRefGoogle Scholar
  37. Liu JY, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123PubMedCrossRefGoogle Scholar
  38. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lucking R, Lumbsch T, O'Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480CrossRefGoogle Scholar
  39. Mabberley DJ (1987) The plant-book—a portable dictionary of the higher plants. Cambridge Univ Press, CambridgeGoogle Scholar
  40. Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (A review). Proc Natl Acad Sci U S A 77:2113–2118PubMedCrossRefGoogle Scholar
  41. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community–ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman & Hall, London, pp 357–423Google Scholar
  42. Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751CrossRefGoogle Scholar
  43. Newton AC, Haigh JM (1998) Diversity of ectomycorrhizal fungi in Britain: a test of the species–area relationship, and the role of host specificity. New Phytol 138:619–627CrossRefGoogle Scholar
  44. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164PubMedCrossRefGoogle Scholar
  45. Pocock K, Duckett JG (1985) On the occurrence of branched and swollen rhizoids in British hepatics: their relationships with the substratum and associations with fungi. New Phytol 99:281–304CrossRefGoogle Scholar
  46. Qiu Y-L, Cho Y, Cox JC, Palmer JD (1998) The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674PubMedCrossRefGoogle Scholar
  47. Qiu Y-L, Lee J (2000) Transition to a land flora: a molecular phylogenetic perspective. J Phycol 36:799–802CrossRefGoogle Scholar
  48. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B 355:815–831CrossRefGoogle Scholar
  49. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  50. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843PubMedCrossRefGoogle Scholar
  51. Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Trans R Soc Lond B 355:769–793CrossRefGoogle Scholar
  52. Russell J, Bulman S (2005) The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol 165:567–579PubMedCrossRefGoogle Scholar
  53. Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  54. Selosse MA, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426PubMedCrossRefGoogle Scholar
  55. Selosse MA, Le Tacon F (1998) The land flora: a phototroph–fungus partnership? Trends Ecol Evol 13:15–20CrossRefGoogle Scholar
  56. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San DiegoGoogle Scholar
  57. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461Google Scholar
  58. Stevens PF (2004) Angiosperm phylogeny website. Version 5. http://www.mobot.org/MOBOT/research/APweb/. Cited May 2004
  59. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962PubMedCrossRefGoogle Scholar
  60. Stubblefield SP, Taylor TN, Trappe JM (1987) Vesicular–arbuscular mycorrhizae from the Triassic of Antarctica. Am J Bot 74:1904–1911CrossRefGoogle Scholar
  61. Taylor TN, Hass H, Remy W (1992) Devonian fungi: interactions with the green alga Paleonitella. Mycologia 84:901–910CrossRefGoogle Scholar
  62. Taylor TN, Hass H, Kerp H (1999) The oldest fossil ascomycetes. Nature 399:648PubMedCrossRefGoogle Scholar
  63. Taylor TN, Kerp H, Hass H (2005) Life history biology of early land plants: deciphering the gametophyte phase. Proc Natl Acad Sci U S A 102:5892–5897PubMedCrossRefGoogle Scholar
  64. Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, pp 5–25Google Scholar
  65. Trappe JM (1996) What is a mycorrhiza? In: Azcon-Aguilar C, Barrea J-M (eds) Mycorrhiza in integrated systems–from genes to plant development. Proceedings of the 4th European Symposium on Mycorrhizae, EC Report EUR 16728, Luxembourg, pp 3–6Google Scholar
  66. Wellman CH, Osterloff PL, Mohiuddin U (2003) Nature 425:282–285PubMedCrossRefGoogle Scholar
  67. Zhao Z-W (2000) The arbuscular mycorrhizas of pteridophytes in Yunnan, southwest China: evolutionary interpretations. Mycorrhiza 10:145–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyThe University Herbarium, University of MichiganAnn ArborUSA

Personalised recommendations