, Volume 16, Issue 3, pp 175–182 | Cite as

Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests

  • David J. Midgley
  • Lyndon A. Jordan
  • Jennifer A. Saleeba
  • Peter A. McGee
Original Paper


The utilisation of a range of cell-wall-related and aromatic carbon substrates by multiple genotypes of three ericoid mycorrhizal fungal taxa was compared with two orchid mycorrhizal fungal taxa. Both groups of fungi catabolised most common substrates, though significant inter- and intraspecific variability was observed in the use of a few carbon substrates. Orchid mycorrhizal fungi had limited access to tannic acid as a carbon source and did not use phenylalanine, while the ericoid mycorrhizal fungi used both. Utilisation of tryptophan was limited to single genotypes of each of the orchid mycorrhizal fungi, and to only two of the three ericoid mycorrhizal fungi examined. Although broadly similar, some significant differences apparently exist in carbon catabolism of ericoid and orchid mycorrhizal fungi from the same habitat. Functional and ecological implications of these observations are discussed.


Orchidaceae Ericaceae Mycorrhiza Carbon utilisation Competition 



We gratefully acknowledge Mr. Endymion Cooper for his assistance in a pilot project with the OM fungi used in this study, and Dr. Andrew Perkins for allowing us access to his collection of orchid mycorrhizal fungi at the University of Sydney.


  1. Anderson IC, Chambers SM, Cairney JWG (1999) Intra- and interspecific varation in patterns of organic and inorganic nitrogen utilization by three Australian Pisolithus species. Mycol Res 103:1579–1587CrossRefGoogle Scholar
  2. Barroso J, Chaves Neves H, Pais MSS (1985) Ultrastructural, cytochemical and biochemical aspects related to the formation of O. lutea endomycorrhizae. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. Proceedings of the 1st European symposium on mycorrhizae, Dijon, 1985Google Scholar
  3. Bending GD, Read DJ (1996a) Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1595–1602CrossRefGoogle Scholar
  4. Bending GD, Read DJ (1996b) Nitrogen mobilization from protein–polyphenol complexes by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612CrossRefGoogle Scholar
  5. Bougoure JJ, Bougoure DS, Cairney JWG, Dearnaley JDW (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460CrossRefPubMedGoogle Scholar
  6. Burgeff H (1909) Die wurzelpilze der orchideen, ihre kultur und ihre leben in der pflanze. Gustav Fischer, JenaGoogle Scholar
  7. Burgeff H (1936) Samenkeimung der orchideen. Gustav Fischer, JenaGoogle Scholar
  8. Burke RM, Cairney JWG (1997a) Carohydrolase production by the ericoid mycorrhizal fungus Hymenoscyphus ericae under solid state fermentation conditions. Mycol Res 101:1135–1139CrossRefGoogle Scholar
  9. Burke RM, Cairney JWG (1997b) Purification and characterisation of a β-1-4-endoxylanase from the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 135:345–352CrossRefGoogle Scholar
  10. Cairney JWG, Burke RM (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant material in soil. Plant Soil 205:181–192CrossRefGoogle Scholar
  11. Cairney JWG (1999) Intraspecific physiological variation: implications for understanding functional diversity in ecotmycorrhizal fungi. Mycorrhiza 9:125–135CrossRefGoogle Scholar
  12. Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740CrossRefGoogle Scholar
  13. Cairney JWG, Sawyer NA, Sharples JM, Meharg AA (2000) Intraspecific variation in nitrogen source utilisation by isolates of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf and Kernan. Soil Biol Biochem 32:1319–1322CrossRefGoogle Scholar
  14. Guidot A, Verner M-C, Debaud JC, Marmeisse R (2005) Intraspecific varation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 15:167–177. DOI 10.1007/s00572-004-0318-1Google Scholar
  15. Hadley G, Perombelon M (1963) Production of pectic enzymes by Rhizoctonia solani and orchid endophytes. Nature 200:1337PubMedCrossRefGoogle Scholar
  16. Herrick, JA (1940) The growth of Stereum gausapatum Fries in relation to temperature and acidity. Ohio J Sci 40:123–129Google Scholar
  17. Holländer S (1932) Ernährungsphysiologische untersuchungen an wurzelpilzen saprophytisch lebender orchideen. Julius-Maximilian-Universität, WürtzbergGoogle Scholar
  18. Jennings DH (1995) The physiology of fungal nutrition. Cambridge University Press, CambridgeGoogle Scholar
  19. Johnson GT, Jones AC (1941) Data on the cultural characteristics of a species of Coprinus. Mycologia 33:133–140Google Scholar
  20. Kerley SJ, Read DJ (1995) The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericae and transfer of chitin–nitrogen to the host plant. New Phytol 131:369–375CrossRefGoogle Scholar
  21. King SA, Buckney RT (2002) Invasion of exotic plants in nutrient-enriched urban bushland. Austral Ecol 27:573–583 DOI 10.1046/J.1442-9993.2002.01220.XGoogle Scholar
  22. Leake JR, Read DJ (1990) Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol 115:243–250CrossRefGoogle Scholar
  23. Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow D and Söderström B (eds) The mycota. IV. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 281–301Google Scholar
  24. Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of lobolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tintorius. For Sci 21:245–254Google Scholar
  25. Meletiadis J, Meis JFGM, Mouton JW, Verweij PE (2001) Analysis of growth characteristics of filamentous fungi in different nutrient media. J Clin Microbiol 39:478–484CrossRefPubMedGoogle Scholar
  26. Midgley DJ, Chambers SM, Cairney JWG (2002) Spatial distribution of fungal endophyte genotypes in a Woollsia pungens (Ericaceae) root system. Aust J Bot 50:559–565CrossRefGoogle Scholar
  27. Midgley DJ, Chambers SM, Cairney JWG (2004a) Utilisation of carbon substrates by multiple genotypes of ericoid mycorrhizal fungal endophytes from eastern Australian Ericaceae. Mycorrhiza 14:245–251CrossRefPubMedGoogle Scholar
  28. Midgley DJ, Chambers SM, Cairney JWG (2004b) Inorganic and organic substrates as sources of nitrogen and phosphorus for multiple genotypes of two ericoid mycorrhizal fungal taxa from Woollsia pungens and Leucopogon parviflorus (Ericaceae). Aust J Bot 52:63–71CrossRefGoogle Scholar
  29. Midgley DJ, Chambers SM, Cairney JWG (2004c) Distribution of ericoid mycorrhizal endophytes and root-associated fungi in neighbouring Ericaceae plants in the field. Plant Soil 259:137–151CrossRefGoogle Scholar
  30. Nieuwdorp PJ (1972) Some observations with light and electron microscope on the endotrophic mycorrhiza of orchids. Acta Bot Neerl 21:128–144Google Scholar
  31. Perkins AJ, McGee PA (1995) Distribution of the orchid mycorrhizal fungus Rhizoctonia solani in relation to its host Pterostylis acuminata in the field. Aust J Bot 43:565–575CrossRefGoogle Scholar
  32. Perotto R, Bettini V and Bonfante P (1993) Evidence of two polygalacturonases produced by a mycorrhizal ericoid fungus during saprotrophic growth. FEMS Microbiol Lett 114:85–92CrossRefGoogle Scholar
  33. Perotto S, Coisson J D, Perugini O, Cometi V, Bonfante P (1997) Production of pectin-degrading enzymes by ericoid mycorrhizal fungi. New Phytol 135:151–162CrossRefGoogle Scholar
  34. Piercey MM, Thormann MN, Currah RS (2002) Saprotrophic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza 12:175–180CrossRefPubMedGoogle Scholar
  35. Pope EJ (2001) A hierarchical analysis of functional and genetic diversity within the Rhizoctonia solani species complex. Ph.D. thesis. Deparment of Microbiology, Faculty of Science, University of SydneyGoogle Scholar
  36. Rasmussen HN (1995) Terrestrial orchids, from seed to mycotrophic plant. Cambridge University Press, CambridgeGoogle Scholar
  37. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–390CrossRefGoogle Scholar
  38. Richard P, Londesborough J, Putkonen, M, Kalkkinen N, Penttila, M (2001) Cloning and expression of a fungal l-arabinitol 4 dehydrogenase gene. J Biol Chem 276:40631–40632CrossRefPubMedGoogle Scholar
  39. Sawyer NA, Chambers SM, Cairney JWG (2003) Utilisation of inorganic and organic nitrogen sources by Amanita species native to temperate eastern Australia. Mycol Res 104:413–420CrossRefGoogle Scholar
  40. Smith SE (1966) Physiology and ecology of orchid mycorrhizal fungi with reference to seedling germination. New Phytol 65:488–499CrossRefGoogle Scholar
  41. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd ed. Academic, LondonGoogle Scholar
  42. Taylor DL, Bruns, TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8:1719–1732CrossRefPubMedGoogle Scholar
  43. Varma A, Bonfante P (1994) Utilisation of cell-wall related carbohydrates by ericoid mycorrhizal endophytes. Symbiosis 16:301–313Google Scholar
  44. Warcup JH (1971) Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol 70:41–46CrossRefGoogle Scholar
  45. Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381CrossRefGoogle Scholar
  46. Whittaker SP, Cairney JWG (2001) Influence of amino acids on biomass production by ericoid mycorrhizal endophytes from Woollsia pungens (Epacridaceae). Mycol Res 105:105–111CrossRefGoogle Scholar
  47. Wolff H (1933) Zur assimilation atmosphärischen stickstoffs durch die wurzelpilze von Coralliorhiza innata R. Br., sowie der epiphyten Cattleya bowringiana und Laelia anceps Ldl. Jahrb Wiss Bot 77:657–684Google Scholar
  48. Zelmer LW, Cuthbertson L, Currah RS (1996) Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience 37:439–448CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • David J. Midgley
    • 1
  • Lyndon A. Jordan
    • 1
  • Jennifer A. Saleeba
    • 1
  • Peter A. McGee
    • 1
  1. 1.School of Biological Sciences, Macleay Building (A12)University of SydneySydneyAustralia

Personalised recommendations