, Volume 16, Issue 2, pp 111–116 | Cite as

Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’

  • Akiyoshi Yamada
  • Ken Maeda
  • Hisayasu Kobayashi
  • Hitoshi Murata
Original Paper


We established an in vitro ectomycorrhizal symbiosis between Tricholoma matsutake and Pinus densiflora. Mycorrhiza formed in a substrate of Modified Norkrans' C medium and granite-based soil had features similar to those observed previously only in naturally occurring mycorrhizal system called ‘shiro,’ and promoted the growth of plants with smaller root/shoot ratios. The in vitro formation of ‘shiro’ is essential for the development of T. matsutake system to produce mushrooms and is useful for the propagation and plantation of the mycorrhizal seedlings.


Ectomycorrhizal symbiosis Edible mushroom cultivation Pinus densiflora Plant-growth-promoting fungi Tricholoma matsutake 



This work was supported by grants from Shinshu University, Ibaraki prefecture, and the Ministry of Agriculture, Forestry, and Fisheries of Japan.


  1. Abuzinadah RA, Finlay RD, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytol 103:495–506CrossRefGoogle Scholar
  2. Agerer R (1987–1998) Colour atlas of ectomycorrhizae 1th–11th del. Einhorn-Verlag, MunichGoogle Scholar
  3. Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behaviour of ectomycorrhizal mycelium and the translocation of nutrient from exploited organic matter. New Phytol 130:401–409CrossRefGoogle Scholar
  4. Björkman E (1942) Über die Bedingungen der Mykorrhizabildung bei Kiefer und Fichte (On the conditions for the formation of mycorrhiza in pine and spruce). Symb Bot Ups 4:1–190Google Scholar
  5. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture (Chap. 4.3: Measuring root colonisation by mycorrhizal fungi, pp 184–193.). Australian Centre for International Agricultural Research, Canberra, AustraliaGoogle Scholar
  6. Colpaert JV, van Assche JA, Luijtens K (1992) The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L. New Phytol 120:127–135CrossRefGoogle Scholar
  7. Danell E (2002) Current research on chantharelle cultivation in Sweden. In: Hall I, Wang Y, Danell E, Zambonelii A (eds) Edible mycorrhizal mushrooms and their cultivation, Crop & Food Research, Christchurch, New Zealand, pp 1–4Google Scholar
  8. Gill WM, Guerin-Laguette A, Lapeyrie F, Suzuki K (2000) Matsutake—morphological evidences of ectomycorrhiza formation between Tricholoma matsutake and host roots in a pure Pinus densiflora forest stand. New Phytol 147:381–388CrossRefGoogle Scholar
  9. Guerin-Laguette A, Conventi S, Ruiz G, Plassard C, Mousan D (2003a) The ectomycorrhizal symbiosis between Lactarius deliciosus and Pinus sylvestris in forest soil samples: symbiotic efficiency and development on roots of a rDNA internal transcribed spacer-selected isolate of L. deliciosus. Mycorrhiza 13:17–25PubMedCrossRefGoogle Scholar
  10. Guerin-Laguette A, Shindo K, Matsushita N, Suzuki K, Lapeyrie F (2004) Mycorrhizal fungus Tricholoma matsutake stimulates Pinus densiflora seedling growth in vitro. Mycorrhiza 14:397–400PubMedCrossRefGoogle Scholar
  11. Guerin-Laguette A, Vaario LM, Gill WM, Lapeyrie F, Matsushita N, Suzuki K (2000) Rapid in vitro ectomycorrhizal infection on Pinus densiflora roots by Tricholoma matsutake. Mycoscience 41:389–393CrossRefGoogle Scholar
  12. Guerin-Laguette A, Vaario LM, Matsushita N, Shindo K, Suzuki K, Lapeyrie F (2003b) Growth stimulation of Shiro-like, mycorrhiza forming, mycelium of Tricholoma matsutake on solid substrates by non-ionic surfactants or vegetable oil. Mycol Prog 2:37–44CrossRefGoogle Scholar
  13. Hamada M (1950) Physiology and ecology of Armillaria matsutake. Bot Mag Tokyo 63:741–742Google Scholar
  14. Hosford D, Pilz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American Matsutake mushrooms. USDA Forest Service PNW-GTR-412, pp 1–68Google Scholar
  15. Jumpponen A, Trappe JM (1998) Performance of Pinus contorta inoculated with two strains of root endophytic fungus, Phialocephala fortinii: effects of synthesis system and glucose concentration. Can J Bot 76:1205–1213CrossRefGoogle Scholar
  16. Lefevre CK, Müller WR (1998) Description code 18: Tricholoma magnivelare (Peck) Readhead + Pinus contorta Dougl. var. latifolia Engelm. In: Goodman DM, Durall DM, Trofymow JA, Berch S (eds) Concise descriptions of North American ectomycorrhizaze. Mycologue, Sydney, CanadaGoogle Scholar
  17. Masui K (1927) A study of the ectotrophic mycorrhizas of woody plants. Mem Coll Sci Univ Kyoto B III 2:152–279Google Scholar
  18. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infection: I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  19. Molina R, Palmer JG (1982)Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed)Method and principles of mycorrhizal research. APS Press, St. Paul, MN, pp. 115–129Google Scholar
  20. Murata H, Babasaki K, Yamada A (2004) Highly polymorphic DNA markers to specify strains of the ectomycorrhizal basidiomycete Tricholoma matsutake based on σmarY1, the long terminal repeat of gypsy-type retroelement marY1. Mycorrhiza 15:179–186PubMedCrossRefGoogle Scholar
  21. Ogawa M (1978) The biology of matsutake (in Japanese). Tsukiji-shokan, TokyoGoogle Scholar
  22. Pacioni G, Comandini O (1999) Tuber. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi—key genera profile. Springer, Berlin Heidelberg New York, pp 163–186Google Scholar
  23. Peterson RL, Chakravarty P (1991) Technique in synthesizing ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Method in microbiology, vol 23. Academic, London, pp 75–106Google Scholar
  24. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd ed. Academic Press, San Diego, pp. 1–605Google Scholar
  25. Turnbull MH, Goodall R, Stewart GR (1995) The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. Plant Cell Environ 18:1386–1394CrossRefGoogle Scholar
  26. Vaario LM, Guerin-Laguette A, Matsushita N, Suzuki K, Lapeyrie F (2002) Saprobic potential of Tricholoma matsutake: growth over pine bark treated with surfactants. Mycorrhiza 12:1–5PubMedCrossRefGoogle Scholar
  27. Wang Y, Hall IR, Evans LA (1997) Ectomycorrhizal fungi with edible fruiting bodies 1. Tricholoma matsutake and related fungi. Econ Bot 51:311–327Google Scholar
  28. Yamada A, Kanekawa S, Ohmasa M (1999a) Ectomycorrhiza formation of Tricholoma matsutake on Pinus densiflora. Mycoscience 40:193–198CrossRefGoogle Scholar
  29. Yamada A, Maeda K, Ohmasa M (1999b) Ectomycorrhiza formation of Tricholoma matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 40:455–463CrossRefGoogle Scholar
  30. Yamada A, Kobayashi H, Murata H (2003) Tricholoma matsutake IFO6933 and IFO30604, “matsutake” isolates that have been maintained on slants and widely used in vitro for a quarter to half a century, can form ectomycorrhiza in Pinus densiflora. Mycoscience 44:249–251Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Akiyoshi Yamada
    • 1
  • Ken Maeda
    • 2
  • Hisayasu Kobayashi
    • 2
  • Hitoshi Murata
    • 3
  1. 1.Department of Bioscience and Biotechnology, Faculty of AgricultureShinshu UniversityNaganoJapan
  2. 2.Ibaraki Prefectural Forestry InstituteIbarakiJapan
  3. 3.Forestry and Forest Products Research InstituteIbarakiJapan

Personalised recommendations