Skip to main content

Advertisement

Log in

Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi have long been shown to successfully contribute to phosphate uptake by plant roots. The first step of the fungus-mediated uptake is carried out by fungal membrane Pi transporters (PT) that transfer Pi from the soil into the extraradical hyphae. In the present work we report the identification and characterisation of a PT gene from Glomus mosseae, an AM fungus important for natural and agricultural ecosystems. Degenerate primers and rapid amplification of cDNA ends–polymerase chain reaction (PCR) allowed us to obtain a sequence (GmosPT) showing a highly significant similarity with GiPT and GvPT, the only two other PT genes already isolated from AM fungi. Reverse transcriptase–PCR experiments were carried out to study GmosPT expression profiles in structures corresponding to different fungal life stages (quiescent and germinated sporocarps, intraradical and extraradical hyphae) and in extra- and intraradical hyphae exposed to high and low Pi concentrations. GmosPT showed an expression pattern similar to GiPT, the Glomus intraradices PT gene, since its transcript was more abundant in the extraradical mycelium treated with micromolar Pi levels. In addition, the intraradical mycelium also showed a significant GmosPT expression level that was independent from external Pi concentrations. This finding opens new questions about the role and functioning of high-affinity PT in AM fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002) Tracking metabolism and imaging transport in arbuscular mycorrhizas. Plant Soil 244:189–197

    Article  CAS  Google Scholar 

  • Balestrini R, Cosgrove DJ, Bonfante P (2005) Differential location of α-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220(6):889–899

    Article  CAS  PubMed  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–912

    Article  PubMed  Google Scholar 

  • Burleigh SH, Cavagnaro T, Jacobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Callow JA, Capaccio LCM, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular–arbuscular mycorrhizas. New Phytol 80:125–134

    Article  CAS  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPred II: an improved software for membrane protein structure predictions. Comp Appl Biosci 10:685–686

    CAS  PubMed  Google Scholar 

  • Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular–arbuscular mycorrhizas. New Phytol 84:649–659

    Article  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Ezawa T, Cavagnaro TR, Smith SE, Smith FA, Ohtomo R (2003) Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytol 161:387–392

    Article  Google Scholar 

  • Ferrol N, Barea JM, Azcón-Aguilar C (2000) Plasma membrane H+–ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37:112–118

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Tec Com 22, Commonwealth Agriculture Bureau, London. pp 430–434

    Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement and its uptake by plants. Aust J Soil Res 35:227–239

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Karandashav V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10(1)23–29

    Article  Google Scholar 

  • Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 101:6285–6290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfranco L, Vallino M, Bonfante P (1999) Differential expression of chitin synthase genes in the arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol 142:347–354

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant-Microb Interact 14:1140–1148

    Article  CAS  Google Scholar 

  • Marschner H (1995) Nutrient availability in soils. In: Marschner H (ed) Mineral nutrition of higher plants. Academic, London, pp 483–505

    Chapter  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots—an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  CAS  PubMed  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–470

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Breuninger M, Franken P, Ocón A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+–ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279

    CAS  PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421

    Article  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses:the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Solaiman M, Ezawa T, Kojima T, Saito M (1999) Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Appl Environ Microbiol 65:5604–5606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timonen S, Smith FA, Smith SE (2001) Microtubules of the mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots. Can J Bot 79:307–313

    Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • Uetake Y, Kojima T, Ezawa T, Saito M (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 154:761–768

    Article  Google Scholar 

  • van Bel AJE, Ehlers K, Knoblauch M (2002) Sieve elements caught in the act. Trends Plant Sci 7(3):126–132

    Article  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Van Tuinen D, Jaquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of cucurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65:1795–1804

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic, San Diego, USA, pp 315–322

    Google Scholar 

  • Zhu YG, Cavagnaro TR, Smith SE, Dickson S (2001) Backseat driving? Accessing phosphate beyond the rizosphere depletion zone. Trends Plant Sci 6:194–195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the EU GENOMYCA project QLK5-CT-2000-01319, the Italian Firb Project (Plant-Microbe Interactions) and CEBIOVEM (D.M. 193/2003) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lanfranco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, A., Magurno, F., Bonfante, P. et al. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae . Mycorrhiza 15, 620–627 (2005). https://doi.org/10.1007/s00572-005-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-005-0006-9

Keywords

Navigation