Mycorrhiza

, Volume 15, Issue 8, pp 620–627 | Cite as

Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae

  • A. Benedetto
  • F. Magurno
  • P. Bonfante
  • L. Lanfranco
Original Paper

Abstract

Arbuscular mycorrhizal (AM) fungi have long been shown to successfully contribute to phosphate uptake by plant roots. The first step of the fungus-mediated uptake is carried out by fungal membrane Pi transporters (PT) that transfer Pi from the soil into the extraradical hyphae. In the present work we report the identification and characterisation of a PT gene from Glomus mosseae, an AM fungus important for natural and agricultural ecosystems. Degenerate primers and rapid amplification of cDNA ends–polymerase chain reaction (PCR) allowed us to obtain a sequence (GmosPT) showing a highly significant similarity with GiPT and GvPT, the only two other PT genes already isolated from AM fungi. Reverse transcriptase–PCR experiments were carried out to study GmosPT expression profiles in structures corresponding to different fungal life stages (quiescent and germinated sporocarps, intraradical and extraradical hyphae) and in extra- and intraradical hyphae exposed to high and low Pi concentrations. GmosPT showed an expression pattern similar to GiPT, the Glomus intraradices PT gene, since its transcript was more abundant in the extraradical mycelium treated with micromolar Pi levels. In addition, the intraradical mycelium also showed a significant GmosPT expression level that was independent from external Pi concentrations. This finding opens new questions about the role and functioning of high-affinity PT in AM fungi.

Keywords

AM fungi Phosphate transporters Glomus mosseae Symbiosis 

References

  1. Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002) Tracking metabolism and imaging transport in arbuscular mycorrhizas. Plant Soil 244:189–197CrossRefGoogle Scholar
  2. Balestrini R, Cosgrove DJ, Bonfante P (2005) Differential location of α-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220(6):889–899CrossRefPubMedGoogle Scholar
  3. Bieleski RL (1973) Phosphate pools, phosphate transport and phosphate availability. Annu Rev Plant Physiol 24:225–252CrossRefGoogle Scholar
  4. Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–912CrossRefPubMedGoogle Scholar
  5. Burleigh SH, Cavagnaro T, Jacobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601CrossRefPubMedGoogle Scholar
  6. Callow JA, Capaccio LCM, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular–arbuscular mycorrhizas. New Phytol 80:125–134CrossRefGoogle Scholar
  7. Claros MG, von Heijne G (1994) TopPred II: an improved software for membrane protein structure predictions. Comp Appl Biosci 10:685–686PubMedGoogle Scholar
  8. Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular–arbuscular mycorrhizas. New Phytol 84:649–659CrossRefGoogle Scholar
  9. Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230CrossRefGoogle Scholar
  10. Ezawa T, Cavagnaro TR, Smith SE, Smith FA, Ohtomo R (2003) Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytol 161:387–392CrossRefGoogle Scholar
  11. Ferrol N, Barea JM, Azcón-Aguilar C (2000) Plasma membrane H+–ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37:112–118CrossRefPubMedGoogle Scholar
  12. Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629CrossRefPubMedGoogle Scholar
  13. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429CrossRefPubMedGoogle Scholar
  14. Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Tec Com 22, Commonwealth Agriculture Bureau, London. pp 430–434Google Scholar
  15. Holford ICR (1997) Soil phosphorus: its measurement and its uptake by plants. Aust J Soil Res 35:227–239CrossRefGoogle Scholar
  16. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16Google Scholar
  17. Karandashav V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10(1)23–29CrossRefGoogle Scholar
  18. Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 101:6285–6290CrossRefPubMedGoogle Scholar
  19. Lanfranco L, Vallino M, Bonfante P (1999) Differential expression of chitin synthase genes in the arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol 142:347–354CrossRefGoogle Scholar
  20. Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant-Microb Interact 14:1140–1148CrossRefGoogle Scholar
  21. Marschner H (1995) Nutrient availability in soils. In: Marschner H (ed) Mineral nutrition of higher plants. Academic, London, pp 483–505Google Scholar
  22. Neumann G, Martinoia E (2002) Cluster roots—an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167CrossRefPubMedGoogle Scholar
  23. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329CrossRefPubMedGoogle Scholar
  24. Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37PubMedCrossRefGoogle Scholar
  25. Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–470CrossRefPubMedGoogle Scholar
  26. Requena N, Breuninger M, Franken P, Ocón A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+–ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549CrossRefPubMedGoogle Scholar
  27. Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279PubMedGoogle Scholar
  28. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421CrossRefGoogle Scholar
  29. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses:the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  30. Solaiman M, Ezawa T, Kojima T, Saito M (1999) Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Appl Environ Microbiol 65:5604–5606PubMedGoogle Scholar
  31. Timonen S, Smith FA, Smith SE (2001) Microtubules of the mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots. Can J Bot 79:307–313CrossRefGoogle Scholar
  32. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221Google Scholar
  33. Uetake Y, Kojima T, Ezawa T, Saito M (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 154:761–768CrossRefGoogle Scholar
  34. van Bel AJE, Ehlers K, Knoblauch M (2002) Sieve elements caught in the act. Trends Plant Sci 7(3):126–132CrossRefPubMedGoogle Scholar
  35. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  36. Van Tuinen D, Jaquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887CrossRefPubMedGoogle Scholar
  37. Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of cucurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65:1795–1804CrossRefPubMedGoogle Scholar
  38. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic, San Diego, USA, pp 315–322Google Scholar
  39. Zhu YG, Cavagnaro TR, Smith SE, Dickson S (2001) Backseat driving? Accessing phosphate beyond the rizosphere depletion zone. Trends Plant Sci 6:194–195CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. Benedetto
    • 1
  • F. Magurno
    • 1
  • P. Bonfante
    • 1
    • 2
  • L. Lanfranco
    • 1
    • 3
  1. 1.Dipartimento di Biologia VegetaleUniversità degli Studi di TorinoTurinItaly
  2. 2.Istituto per la Protezione delle PianteSezione di TorinoTurinItaly
  3. 3.Dipartimento di Biologia VegetaleTurinItaly

Personalised recommendations