Mycorrhiza

, Volume 14, Issue 3, pp 145–163 | Cite as

A history of research on arbuscular mycorrhiza

Review

Abstract

This is not a review paper in the traditional sense, of which there are many. Three of the most influential reviews that summarized well some of the “older” literature include those by Nicolson (1967), Gerdemann (1968) and Mosse (1973). Instead, in this brief and incomplete work, we attempt to show the historical development of research on arbuscular mycorrhizas. We owe much to those who have written other historical accounts, including Rayner (1926–1927), Trappe and Berch (1985), Mosse (1985), Schenck (1985), Harley (1991) and Allen (1996), but the contents of this work naturally reflect our own ignorance, interests and biases. It was often difficult to distinguish between the historical and the contemporary, and we did not use any specific cutoff date in making this distinction. The degree to which we include “contemporary” literature was determined by our own assessment of its connectedness to older literature. In any case, we hope this will be of some interest to those of you who study the arbuscular mycorrhiza, and that it will serve the purpose of providing what we consider to be an important historical context for current researchers. We wish you good fortune in your research.

Keywords

Arbuscular mycorrhiza Discovery Nomenclature Physiology Plant productivity 

Notes

Acknowledgements

This paper is modified from a lecture given by R.T.K. at the COST 8.38 Meeting, Arbuscular Mycorrhizal Research in Europe, The Dawning of a New Millennium, in Pisa, Italy. We thank the international and local organizing committees of that meeting and, in particular, Manuela Giovannetti for the opportunity to present that lecture. We also thank Vivienne Gianinazzi-Pearson for her encouragement to publish the lecture in this format, and Guillaume Bécard for his suggestion that we (B.M. and R.T.K.) collaborate in this effort. We are indebted to Guillaume Bécard for consultation on various sections of this paper, to Paul Grun, who translated a paper from the French, to Eckhard George, who supplied us with information about the 1960 meeting in Weimar, to Sally Smith, with whom we have discussed the contributions of some of the pioneers in our field, and to André Fortin and Paola Bonfante for their suggestions of material to include. We express our gratitude to the Life Sciences librarians at the Pennsylvania State University, and to the librarians at the Botany Libraries of Harvard University for their help in obtaining some of the older sources referenced herein. We dedicate this paper to The Nim, a thirteen-year old Geochelone chilensis, who lives happily half of each year in central France, and the other half in the south of England.

References

  1. Abbott LK, Robson AD (1982) The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Res 33:389–408Google Scholar
  2. Abbott LK, Robson AD (1984) The effect of VA mycorrhizae on plant growth. In: Powell CL, Bagyaraj DJ (eds) VA Mycorrhiza. CRC Press, Boca Raton, Fla., pp 113–130Google Scholar
  3. Abbott LK, Robson AD, Hall IR (1983) Introduction of vesicular arbuscular mycorrhizal fungi into agricultural soils. Aust J Agric Res 34:741–749Google Scholar
  4. Addy HD, Schaffer GF, Miller MH, Peterson RL (1994) Survival of the extraradical mycelium of a VAM fungus in frozen soil over winter. Mycorrhiza 5:1–5CrossRefGoogle Scholar
  5. Adholeya A (2003) Commercial production of AMF through industrial mode and its large scale application. In: Abstracts, 4th International Conference on Mycorrhizae. Montreal, Canada, p 240Google Scholar
  6. Aldwell FEB, Hall IR (1987) A review of serological techniques for the identification of mycorrhizal fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Proceedings of the 7th North American Conference on Mycorrhizae, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla., pp 305–307Google Scholar
  7. Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycol Res 100:769–782Google Scholar
  8. Allen MF, Allen EB, Friese CF (1989) Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111:45–49Google Scholar
  9. Anderson RC, Liberta AE (1985) VAM spore abundance and diversity in an Illinois corn field and adjacent tallgrass prairie. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae, Forest Research Laboratory, Oregon State University, Corvallis, Ore., p 281Google Scholar
  10. Asai T (1943) Die Bedeutung der mycorrhiza für das Pflanzenleben. Jpn J Bot 12:359–436Google Scholar
  11. Asai T (1944) Über die Mykorrhizenbildung der leguminosen Pflanzen. Jpn J Bot 13:463Google Scholar
  12. Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 163–198Google Scholar
  13. Azcón-Aguilar C, Barea JM (1996a) Mycorrhizas in integrated systems from genes to plant development. Proceedings of the fourth European symposium on mycorrhizas. European Commission, BrusselsGoogle Scholar
  14. Azcón-Aguilar C, Barea JM (1996b) Arbuscular mycorrhizas and biological control of soil-borne pathogens—an overview of mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  15. Baltruschat H, Schönbeck F (1972) The influence of endotrophic mycorrhiza on the infestation of tobacco by Thielaviopsis basicola. Phytopathol Z 84:171–188Google Scholar
  16. Barea JM, Azcón-Aguilar C, AzcónR (1988) The role of mycorrhiza in improving the establishment and function of the Rhizobium-legume system under field conditions. In: Beck DP, Materon LA (eds) Nitrogen fixation by legumes in Mediterranean agriculture. Nijhof, DordrechtGoogle Scholar
  17. Barrett JT (1961) Isolation, culture, and host relation of the phycomycetoid vesicular-arbuscular mycorrhizal endophyte Rhizophagus. Recent Adv Bot 2:1725–1727Google Scholar
  18. Baylis GTS (1959) Effect of vesicular-arbuscular mycorrhizas on growth of Griselinia littoralis (Cornaceae) New Phytol 58:274Google Scholar
  19. Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant Soil 33:713–716Google Scholar
  20. Baylis GTS (1972a) Fungi, phosphorus and the evolution of root systems. Search 3:257–259Google Scholar
  21. Baylis GTS (1972b) Minimum levels of available phosphorus for non-mycorrhizal plants. Plant Soil 36:233–234Google Scholar
  22. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218Google Scholar
  23. Bécard G, Piché Y (1989a) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112:77–83Google Scholar
  24. Bécard G, Piché Y (1989b) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325Google Scholar
  25. Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58:821–825Google Scholar
  26. Bentivenga SP, Morton JB (1994) Stability and heritability of fatty acid methyl ester profiles of glomalean endomycorrhizal fungi. Mycol Res 98:1419–1426Google Scholar
  27. Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 on the root system of Allium porrum L. New Phytol 114:207–216Google Scholar
  28. Berta G, Tagliasacchi AM, Fusconi A, Gerlero D, Trotta A, Scannerini S (1991) The mitotic cycle in root apical meristem of Allium porrum L. is controlled by the endomycorrhizal fungus Glomus sp. strain E3. Protoplasma 161:12–16Google Scholar
  29. Bertrand D (1972) Interactions entre elements minereaux et microorganisms du sol. Rev Ecol Biol Sol 9:349–396Google Scholar
  30. Besmer YL, Koide RT (1999) Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majus L.) flowers. Mycorrhiza 9:161–166CrossRefGoogle Scholar
  31. Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, BaselGoogle Scholar
  32. Bevege DI (1968) A rapid technique for clearing tannins and staining intact roots for detection of mycorrhizas caused by Endogone spp., and some records of colonization in Australasian plants. Trans Br Mycol Soc 51:808–810Google Scholar
  33. Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhiza fungi in a mown grassland. J Ecol 84:71–82Google Scholar
  34. Bever JD, Pringle A, Schultz PA (2002) Dynamics within the plant-arbuscular mycorrhizal fungal mutualism: testing the nature of community feedback. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 267–292Google Scholar
  35. Bianciotto V, Bonfante P (1992) DNA content of vesicular-arbuscular mycorrhizal fungal spores. Mycologia 82:263–267Google Scholar
  36. Bianciotto V, Bandi C, Minerdi D, Sironi M, Ticky HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010PubMedGoogle Scholar
  37. Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus Glomeribacter gigasporarum’ gen. Nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124CrossRefPubMedGoogle Scholar
  38. Bieleski RL (1973) Phosphate pools, phosphate transport and phosphate availability. Annu Rev Plant Physiol 24:225–252Google Scholar
  39. Biermann B, Linderman RG (1983) Effect of container plant growth medium and fertilizer phosphorus on establishment and host growth response to vesicular-arbuscular mycorrhizae. J Am Soc Hortic Sci 108:962–971Google Scholar
  40. Blackman VH (1903) Some recent observations on mycorhiza. New Phytol 2:23–24Google Scholar
  41. Bonfante P (1991) Biologia delle micorrize nel Centro di Studio sulla Micologia: il passata, il presente e il futuro. In: Estratto da Funghi, Piante e Suolo. Quarat’anni di ricerche del Centro di Studio sulla Micologia del Terreno nel centenario della nascita del suo fondatore Beniamino Peyronel. Centro di Studio sulla Micologia del Terreno, CNR, Torino, pp 135–156Google Scholar
  42. Bonfante-Fasolo P, Vian B (1989) Cell wall architecture in mycorrhizal roots of Allium porrum L. Ann Sci Nat 10:97–109Google Scholar
  43. Boullard B (1982) Brève réponse à une question: que recouvre la notion de mycorhize? In: Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (eds) Les mycorhizes, partie intégrante de la plant: biologie et perspectives d’utilisation. INRA, Paris, pp 15–21Google Scholar
  44. Bowen GD, Rovira AD (1968) The influence of micro-organisms on growth and metabolism on plant roots. In: Wittington WJ (ed) Root growth. Butterworth, London, pp 170–199Google Scholar
  45. Brundrett M, Kendrick B (1990a) The roots and mycorrhizas of herbaceous woodland plants. I. Quantitative aspects of morphology. New Phytol 114:457–468Google Scholar
  46. Brundrett M, Kendrick B (1990b) The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol 114:469–480Google Scholar
  47. Brundrett M, Melville L, Peterson L (1994) Practical methods in mycorrhiza research. Mycologue, Sydney, B.C., CanadaGoogle Scholar
  48. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra, ACT, AustraliaGoogle Scholar
  49. Bucholtz F (1912) Beiträge zur Kenntnis der Gattung Endogone Link. Beih Bot Zbl 29:147–225Google Scholar
  50. Burges A (1936) On the significance of mycorrhiza. New Phytol 35:117–131Google Scholar
  51. Butler EJ (1939) The occurrences and systematic position of the vesicular-arbuscular type of mycorrhizal fungi. Trans Br Mycol Soc 22:274–301Google Scholar
  52. Callow JA, Capaccio LCM, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol 80:125–134Google Scholar
  53. Carey PD, Fitter AH, Watkinson AR (1992) A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90:550–555Google Scholar
  54. Chabot S, Bel-rhlid R, Chênevert R, Piché Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions. New Phytol 122:461–467Google Scholar
  55. Chou LG, Schmitthenner AF (1974) Effect of Rhizobium japonicum and Endogone mosseae on soybean root rot caused by Pythium ultimum and Phytophthora megasperma var. sojae. Plant Dis Rep 58:221–225Google Scholar
  56. Clark FB (1963) Endotrophic mycorrhizae influence yellow poplar seedling growth. Science 140:1220–1221Google Scholar
  57. Clark FB (1964) Micro-organisms and soil structure affect yellow poplar growth. United States Forest Service Research Paper CS-9, Columbus, OhioGoogle Scholar
  58. Clough KS, Sutton JC (1976) Direct observation of fungal aggregates in sand-dune soil. Can J Microbiol 24:326–333Google Scholar
  59. Cooper KM, Grandison GS (1986) Interaction of vesicular-arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Ann Appl Biol 108:555–565Google Scholar
  60. Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327–339Google Scholar
  61. Cox GC, Sanders FET (1974) Ultrastructure of the host-fungus interface in a vesicular-arbuscular mycorrhiza. New Phytol 73:901–912Google Scholar
  62. Cox G, Tinker PB (1976) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. New Phytol 77:371–378Google Scholar
  63. Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host-entophyte transfer in a vesicular-arbuscular mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds, 22–25 July 1974. Academic Press, LondonGoogle Scholar
  64. Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytol 84:649–659Google Scholar
  65. Crush JR (1974) Plant growth responses to vesicular-arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes. New Phytol 73:743–749Google Scholar
  66. Cummings BA (1990) Use of RFLPs as a means of examining genetic relatedness in VAM fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae. University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 63Google Scholar
  67. Daft MJ, El-Giahmi AA (1974) Effect of Endogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation in French bean (Phaseolus vulgaris). New Phytol 73:1139–1147Google Scholar
  68. Daft MJ, Nicolson TH (1966) Effect of Endogone mycorrhiza on plant growth. New Phytol 65:342–350Google Scholar
  69. Daft MJ, Nicolson TH (1969) Effect of Endogone mycorrhiza on plant growth. II. Influence of soluble phosphate on endophyte and host in maize. New Phytol 68:945–952Google Scholar
  70. Dangeard PA (1896) Une maladie du peuplier dans l’ouest de la France. Botaniste 58:38–43Google Scholar
  71. Dangeard PA (1900) Le Rhizophagus populinus. Botaniste 7:285–287Google Scholar
  72. Davidson K, Geringer JE (1990) Genetic studies of vesicular-arbuscular mycorrhizal fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae. University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 70Google Scholar
  73. Dehn B, Dehne H-W (1985) Development of VA mycorrhizal fungi and interactions with Cochliobolus sativus in roots of Graminae. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, ParisGoogle Scholar
  74. Dehne H-W (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119Google Scholar
  75. Dehne H-W, Schoenbeck F (1979) The influence of endotrophic mycorrhiza on plant diseases. 1. Colonization of tomato plants by Fusarium oxysporum F. sp. lycopersici. Phytopathol Z 95:105–110Google Scholar
  76. Dehne H-W, Backhaus GF, Baltruschat H (1987) Inoculation of plants with VA mycorrhizal fungi at inorganic carrier materials. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade, practical applications and research priorities. Proceedings of the 7th North American conference on mycorrhiza. Institute of Food an Agricultural Sciences, University of Florida, Gainesville, Fla., pp 272–273Google Scholar
  77. Demeter K (1923) Ueber “Plasmotypsen” mycorrhiza. Flora 116:405–456Google Scholar
  78. Dodd JC, Jeffries P (1986) Early development of vesicular-arbuscular mycorrhizas in autumn sown cereals. Soil Biol Biochem 8:149–154CrossRefGoogle Scholar
  79. Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (Myc) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.) Plant Sci 60:215–222Google Scholar
  80. Elmer WH (2002) Influence of formononetin and NaCl on mycorrhizal colonization and fusarium crown and root rot of asparagus. Plant Dis 86:1318–1324Google Scholar
  81. Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79:119–125Google Scholar
  82. Fitter AH (1986) Effect of benomyl on leaf phosphorus concentration in alpine grasslands: a test of mycorrhizal benefit. New Phytol 103:767–776Google Scholar
  83. Fitter AH, Sanders IR (1992) Interactions with soil fauna. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 333–356Google Scholar
  84. Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20CrossRefGoogle Scholar
  85. Fox JA, Spasoff L (1972) Interaction of Heterodera solanacearum and Endogone gigantea on tobacco. J Nematol 4:224–225Google Scholar
  86. France RC, Coleman MD, Cline ML (1985) Cover crops to increase inoculum in the field. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 92–94Google Scholar
  87. Francis R, Read DJ (1984) The contributions of mycorrhizal fungi to the determination of plant community structure. In: Robson AD, Abbott LK, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer, DordrechtGoogle Scholar
  88. Francis R, Read DJ (1985) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot 73:S1301–S1309Google Scholar
  89. Frank AB (1885) Ueber die auf Wurzelsymbiose beruhende Ernährung gewisser Baüme durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145Google Scholar
  90. Frank AB (1887) Ueber neue Mycorrhiza-formen. Ber Dtsch Bot Ges 5:395–409Google Scholar
  91. Franke-Snyder M, Douds DD Jr, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48CrossRefGoogle Scholar
  92. Fries EM (1849) Summa Vegetabilium Scandinaveae 2:261–572Google Scholar
  93. Furlan V (1993) Large scale application of endomycorrhizal fungi and technology transfer to the farmer. In: Peterson L, Schelkle M (eds) Abstracts, 9th NACOM, Guelph, Ontario, Canada, p 77Google Scholar
  94. Furlan V, Fortin J-A (1973) Formation of endomycorrhizae by Endogone calospora on Allium cepa under three temperature regimes. Nat Can 100:467–477Google Scholar
  95. Gallaud J (1905) Étude sur les mycorrhizes endotrophes. Rev Gén Bot 17:5–48, 66–83, 123–136, 223–249, 313–325, 425–433, 479–500Google Scholar
  96. Galvez L, Douds DD Jr, Wagoner P, Longnecker LR, Drinkwater LE, Janke RR (1995) An overwintering cover crop increases inoculum of VAM fungi in agricultural soil. Am J Alternative Agric 10:152–156Google Scholar
  97. Gange AC, Brown VK, Farmer LM (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytol 115:85–91Google Scholar
  98. Gerdemann JW (1955a) Relation of a large soil-borne spore to phycomycetous mycorrhizal infections. Mycologia 47:619–632Google Scholar
  99. Gerdemann JW (1955b) Wound healing of hyphae in a phycomycetous mycorrhizal fungus. Mycologia 47:916–918Google Scholar
  100. Gerdemann JW (1961) A species of Endogone from corn causing vesicular-arbuscular causing vesicular-arbuscular mycorrhiza. Mycologia 53:254–261Google Scholar
  101. Gerdemann JW (1964) The effect of mycorrhiza on the growth of maize. Mycologia 56:342–349Google Scholar
  102. Gerdemann JW (1965) Vesicular-arbuscular mycorrhizae formed on maize and tuliptree by Endogone fasciculata. Mycologia 57:562–575Google Scholar
  103. Gerdemann JW (1968) Vesicular-arbuscular mycorrhizae and plant growth. Annu Rev Phytopathol 6:397–418CrossRefGoogle Scholar
  104. Gerdemann JW (1971) Fungi that form the vesicular-arbuscular type of endomycorrhiza. In: Hacskaylo E (ed), Mycorrhizae, Proceedings of the first north American conference on mycorrhizae. USDA Misc Publ 1189, pp 9–18Google Scholar
  105. Gerdemann JW, Nicolson TH (1962) Endogone spores in cultivated soils. Nature 195:308–309Google Scholar
  106. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244Google Scholar
  107. Gerdemann JW, Trappe JM (1974) The Endogonaceae in the Pacific Northwest. The New York Botanical Garden, New YorkGoogle Scholar
  108. Gianinazzi S, Schüepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Advances in Life Sciences. Birkhaüser, BaselGoogle Scholar
  109. Gianinazzi S, Gianinazzi-Pearson V, Dexheimer J (1979) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected with Glomus mosseae (Nicol. & Gerd.) New Phytol 82:127–132Google Scholar
  110. Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhizal technology in agriculture. From genes to bioproducts. Birkhaüser, BaselGoogle Scholar
  111. Gianinazzi-Pearson V, Gianinazzi S (1986) Physiological and genetical aspects of mycorrhizae. Proceedings of the 1st European symposium on mycorrhizae. INRA, ParisGoogle Scholar
  112. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255Google Scholar
  113. Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA (1991) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? New Phytol 117:61–67Google Scholar
  114. Gianinazzi-Pearson, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal funugs in root cells of transgenic tobacco. Planta 211:609–613PubMedGoogle Scholar
  115. Gilmore AE (1968) Phycomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia 39:87–105Google Scholar
  116. Gilmore AE (1971) The influence of endotrophic mycorrhizae on the growth of peach seedlings. J Am Soc Hortic Sci 96:35Google Scholar
  117. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500Google Scholar
  118. Giovannetti M, Sbrana C (2001) Self and non-self responses in hyphal tips of arbuscular mycorrhizal fungi. In: Geitmann A (ed), Cell biology of plant and fungal tip growth. IOS, AmsterdamGoogle Scholar
  119. Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724CrossRefGoogle Scholar
  120. Godfrey RM (1957) Studies on British species of Endogone. III. Germination of spores. Trans Br Mycol Soc 40:203–210Google Scholar
  121. Graham JH (1986) Citrus mycorrhizae: potential benefits and interactions with pathogens. Hortic Sci 21:1302–1306Google Scholar
  122. Gray LE (1964) Endotrophic mycorrhizae on trees and field crops. MSc Thesis, University of Illinois, Urbana, Ill.Google Scholar
  123. Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422CrossRefGoogle Scholar
  124. Hacskaylo E (ed) (1971) Mycorrhizae, proceedings of the first north American conference on mycorrhizae. USDA Misc Publ 1189Google Scholar
  125. Hall IR (1978) Effects of endomycorrhizas on the competitive ability of white clover. N Z J Agric Res 21:509–515Google Scholar
  126. Harley JL (1950) Recent progress in the study of endotrophic mycorrhiza. New Phytol 49:213–247Google Scholar
  127. Harley JL (1959) The biology of mycorrhiza. Leonard Hill, LondonGoogle Scholar
  128. Harley JL (1969) The biology of mycorrhiza, 2nd edn. Leonard Hill, LondonGoogle Scholar
  129. Harley JL (1991) The history of research on mycorrhiza and the part played by Professor Beniamino Peyronel. In: Estratto da Funghi, Piante e Suolo, Quarat’anni di ricerche del centro di Studio sulla Micologia del Terreno nel centenario della nascita del suo fondatore Beniamino Peyronel. Centro di Studio sulla Micologia del Terreno, CNR, Torino, pp 31–73Google Scholar
  130. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  131. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429CrossRefPubMedGoogle Scholar
  132. Harrison RW (1955) A method of isolating vesicular-arbuscular endophytes from roots. Nature 175:432Google Scholar
  133. Hart M, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 225–242Google Scholar
  134. Hattingh MJ, Gray LE, Gerdemann JW (1973) Uptake and translocation of 32P-labelled phosphate to onion roots by endomycorrhizal fungi. Soil Sci 116:383–387Google Scholar
  135. Hawker LE, Harrison RW, Nicholls VO, Ham AM (1957) Studies on vesicular-arbuscular endophytes. I. A strain of Pythium ultimum Trow. In roots of Allium ursinum L. and other plants. Trans Br Mycol Soc 40:375–390Google Scholar
  136. Hayman DS (1973) The effects of light intensity on VA mycorrhiza. Rothamsted Report for 1972, Part 1. p 81Google Scholar
  137. Hayman DS (1974) Plant growth response to vesicular-arbuscular mycorrhiza. VI. Effect of light and temperature. New Phytol 73:71–80Google Scholar
  138. Hayman DS (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963Google Scholar
  139. Hayman DS, Mosse B (1971) Plant growth responses to vesicular-arbuscular mycorrhiza. I. Growth of Endogone-inoculated plants in phosphate-deficient soils. New Phytol 70:19–27Google Scholar
  140. Hayman DS, Mosse B (1972) Plant growth responses to vesicular-arbuscular mycorrhiza. III. Increased uptake of labile P from soil. New Phytol 71:41–47Google Scholar
  141. Heap AJ, Newman EI (1980) Links between roots by hyphae of vesicular-arbuscular mycorrhizas. New Phytol 85:169–171Google Scholar
  142. Heijden MGA van der, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  143. Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperature deciduous woodland. J Ecol 90:371–384CrossRefGoogle Scholar
  144. Hepper CM (1987) Gel electrophoresis for identification of VAM fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Proceedings of the 7th North American Conference on Mycorrhizae. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla., pp 308–310Google Scholar
  145. Hetrick BD, Bloom J (1983) Vesicular-arbuscular mycorrhizal fungi associated with native tall grass prairie and cultivated winter wheat. Can J Bot 61:2140–2146Google Scholar
  146. Hildebrand AA, Koch LW (1936) A microscopical study of the infection of the roots of strawberry and tobacco seedlings by microorganisms of the soil. Can J Res C 14:11–26Google Scholar
  147. Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular-arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817Google Scholar
  148. Ho I, Trappe JM (1973) Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nat New Biol 244:30–31PubMedGoogle Scholar
  149. Holevas CD (1966) The effect of a vesicular-arbuscular mycorrhiza on the uptake of soil phosphorus by strawberry (Fragaria sp. var. Cambridge Favorite). J Hortic Sci 41:557–64Google Scholar
  150. Howard A (1940) An agricultural testament. Oxford University Press, LondonGoogle Scholar
  151. Hung LL, Sylvia DM (1987) VAM inoculum production in aeroponic culture. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade, practical applications and research priorities. Proceedings of the 7th North American conference on mycorrhiza. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla., pp 272–273Google Scholar
  152. Hussey RS, Roncadori RW (1977) Interaction of Pratylenchus brachyurus and an endomycorrhizal fungus on cotton. J Nematol 9:270–271Google Scholar
  153. Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380Google Scholar
  154. Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol 120:509–516Google Scholar
  155. Janos DP (1980) Mycorrhiza influence tropical succession. Biotropica 12 [Suppl]:56–64Google Scholar
  156. Janse JM (1897) Les endophytes radicaux de quelques plantes Javanaises. Ann Jardin Bot Buitenzorg 14:53–201Google Scholar
  157. Jasper DA, Abbott LK, Robson AD (1989) Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112:101–107Google Scholar
  158. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  159. Joner EJ, Ravnskov S, Jakobsen I (2000) Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labeled inorganic and organic phosphate. Biotechnol Lett 22:1705–1708Google Scholar
  160. Jones FR (1924) A mycorrhizal fungus in the roots of legumes and some other plants. J Agric Res 29:459–470Google Scholar
  161. Jones M, Smith SE (2003) Exploring functional definitions of mycorrhizas: are they always mutualisms? In: Proceedings, ICOM 4, Montreal, Canada, p 470Google Scholar
  162. Kabir Z, O’Halloran IP, Hamel C (1997) Overwinter survival of arbuscular mycorrhizal hyphae is favored by attachment to roots but diminished by disturbance. Mycorrhiza 7:197–200CrossRefGoogle Scholar
  163. Kape R, Wex K, Parniske M, Görge E, Wetzel A, Werner D (1992) Legume root metabolites and VA-mycorrhiza development. J Plant Physiol 141:54–60Google Scholar
  164. Kelley AP (1931) The concept of mycorrhiza. Mycologia 23:147–151Google Scholar
  165. Kelley AP (1950) Mycotrophy in plants. Chronica Botanica, Waltham, Mass.Google Scholar
  166. Khan AG (1972) The effect of vesicular-arbuscular mycorrhizal associations on growth of cereals. I. Effects on maize growth. New Phytol 71:613–619Google Scholar
  167. Kinden DA, Brown MF (1975) Electron microscopy of vesicular-arbuscular mycorrhizae of yellow poplar. III. Host-endophyte interactions during arbuscular development. Can J Microbiol 21:1930–1939PubMedGoogle Scholar
  168. Klironomos JN, Moutoglis P (1999) Colonization of nonmycorrhizal plants by mycorrhizal neighbours as influenced by the collembolan Folsomia candida. Biol Fertil Soils 29:277–281CrossRefGoogle Scholar
  169. Klironomos JN, Hart MM, Gurney JE, Moutoglis P (2001) Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J Bot 79:1161–1166CrossRefGoogle Scholar
  170. Koch LW (1935) Recent investigations on tobacco root rot in Canada. Can J Res 13:174–186Google Scholar
  171. Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386Google Scholar
  172. Koide RT (2000) Mycorrhizal symbiosis and plant reproduction. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 19–46Google Scholar
  173. Koide RT, Dickie IA (2002) Effects of mycorrhizal fungi on plant populations. In: Smith SE, Smith FA (eds) Diversity and integration in mycorrhizas. Kluwer, Dordrecht, pp 307–318Google Scholar
  174. Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyze organic phosphate. New Phytol 148:511–517CrossRefGoogle Scholar
  175. Koide RT, Li M (1990) On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytol 114:59–74Google Scholar
  176. Koide RT, Mooney HA (1987) Spatial variation in inoculum potential of vesicular-arbuscular mycorrhizal fungi caused by formation of gopher mounds. New Phytol 107:173–182Google Scholar
  177. Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581Google Scholar
  178. Kormanik PP, Bryan WC, Schultz RC (1980) Increasing endomycorrhizal fungus inoculum in forest nursery soil with cover crops. South J Appl For 4:151–153Google Scholar
  179. Kruckelmann HW (1975) Effects of fertilizers, soils, soil tillage, and plant species on the frequency of Endogone chlamydospores and mycorrhiza infection in arable soils. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds, 22–25 July 1974, Academic Press, LondonGoogle Scholar
  180. Lewis DH, Ingram J (2002) A brief history of New Phytol. New Phytol 153:2–16CrossRefGoogle Scholar
  181. Link HF (1809) Observationes in ordines plantarum naturales. Die Gesellschaft naturforschender Freunde zu Berlin: Magazin für die neuesten Entdeckungen in der gesammten Naturkunde 3:33Google Scholar
  182. Lohman ML (1927) Occurrence of mycorrhiza in Iowa forest plants. University of Iowa Studies in Natural History 11:33–58Google Scholar
  183. MacDonald RM, Chandler MR, Mosse B (1982) The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi. New Phytol 90:659–663Google Scholar
  184. Magrou J (1946) Sur la culture de quelques champignons de mycorrhizes à arbuscules et à vesicules. Rev Gén Bot 53:49–77Google Scholar
  185. Marx C, Dexheimer J, Gianinazzi-Pearson V, Gianinazzi S (1982) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. IV. Ultracytoenzymological evidence (ATPase) for active transfer processes in the host-arbuscule interface. New Phytol 90:37–43Google Scholar
  186. Massicotte HB, Peterson RL (2003) Exploring structural definitions of mycorrhizas. In: Proceedings, ICOM 4, Montreal, Canada, p 405Google Scholar
  187. McArthur DAJ, Knowles NR (1992) Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100:341–351Google Scholar
  188. McGonigle TP, Fitter AH (1988) Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proc R Soc Edinburgh B 94:25–32Google Scholar
  189. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501Google Scholar
  190. Mejstrík V, Gianinazzi-Pearson V, Alexander IJ, Fitter A, Harley JL, Last FT, Read DJ, Disin RG, Molina R, Finlay RD (eds) (1990) Ecological and applied aspects of ecto- and endomycorrhizal associations. Agric Ecosyst Environ 29:1–492CrossRefGoogle Scholar
  191. Meloh KA (1961) Untersuchungen zur Biologie und Bedeutung der endotrophen Mycorrhiza bei Zea mays L. und Avena sativa L. Dissertationsschrift der Universität KölnGoogle Scholar
  192. Meloh KA (1963) Untersuchungen zur Biologie der endotrophen Mycorrhiza bei Zea mays L. und Avena sativa L. Arch Microbiol 46:369–381Google Scholar
  193. Menge JA (1982) Effect of soil fumigants and fungicides on vesicular-arbuscular fungi. Phytopathology 72:1125–1132Google Scholar
  194. Menge JA (1985) Developing widescale VA mycorrhizal inoculations: is it practical or necessary? In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 80–82Google Scholar
  195. Menge JA, Lembright H, Johnson ELV (1977) Utilization of mycorrhizal fungi in citrus nurseries. Proc Int Soc Citriculture 1:129–132Google Scholar
  196. Merryweather J, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol 132:307–311Google Scholar
  197. Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 3–18Google Scholar
  198. Modjo HS, Hendrix JW (1986) The mycorrhizal fungus Glomus macrocarpum as a cause of tobacco stunt disease. Phytopathology76:688–691Google Scholar
  199. Morandi D, Gianinazzi-Pearson V (1985) Influence of mycorrhizal infection and phosphate nutrition on secondary metabolite contents of soybean roots. In: Gianinazzi-Pearson, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, ParisGoogle Scholar
  200. Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Giagasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491Google Scholar
  201. Morton JB, Benny GL (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195Google Scholar
  202. Mosse B (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171:974PubMedGoogle Scholar
  203. Mosse B (1956) Fructifications of an Endogone species causing endotrophic mycorrhiza in fruit plants. Ann Bot 20:349–362Google Scholar
  204. Mosse B (1957) Growth and chemical composition of mycorrhizal and non-mycorrhizal apples. Nature 179:922PubMedGoogle Scholar
  205. Mosse B (1959a) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Trans Br Mycol Soc 42:274–286Google Scholar
  206. Mosse B (1959b) Observations on the extramatrical mycelium of a vesicular-arbuscular endophyte. Trans Br Mycol Soc 42:439–448Google Scholar
  207. Mosse B (1961) Experimental techniques for obtaining a pure inoculum of an Endogone sp., and some observations on the vesicular-arbuscular infections caused by it and other fungi. Rec Adv Bot 2:1728–1732Google Scholar
  208. Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520Google Scholar
  209. Mosse B (1963) Vesicular-arbuscular mycorrhiza: an extreme form of fungal adaptation. In: Nutman PS, Mosse B (eds) Symbiotic associations. Thirteenth symposium of the Society for General Microbiology. Cambridge University Press, CambridgeGoogle Scholar
  210. Mosse B (1970) Honey-coloured, sessile Endogone spores. II. Changes in fine structure during spore development. Arch Microbiol 74:129–145Google Scholar
  211. Mosse B (1972) The influence of soil type and Endogone strain on the growth of mycorrhizal plants in phosphate deficient soils. Rev Ecol Biol Sol 9:529–537Google Scholar
  212. Mosse B (1973) Plant growth responses to vesicular-arbuscular mycorrhiza. IV. In soil given additional phosphate. New Phytol 72:127–136Google Scholar
  213. Mosse B (1985) Endotrophic mycorrhiza (1885–1950): the dawn and the middle ages. In: Proceedings of the 6th North American conference on mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 48–55Google Scholar
  214. Mosse B, Bowen GD (1968) A key to the recognition of some Endogone spore types. Trans Br Mycol Soc 51:469–483Google Scholar
  215. Mosse B, Hayman DS (1971) Plant growth responses to vesicular-arbuscular mycorrhiza. II. In unsterilized field soils. New Phytol 70:29–34Google Scholar
  216. Mosse B, Hepper CM (1975) Vesicular-arbuscular infections in root-organ cultures. Physiol Plant Pathol 5:215–223Google Scholar
  217. Mosse B, Powell CL, Hayman DS (1976) Plant growth response to vesicular-arbuscular mycorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol 76:331–342Google Scholar
  218. Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050Google Scholar
  219. Murdoch CL, Jackobs JA, Gerdemann JW (1967) Utilization of phosphorus sources of different availability to mycorrhizal and nonmycorrhizal maize. Plant Soil 27:239–334Google Scholar
  220. Nägeli C (1842) Pilze im Innern von Zellen. Linnaea 16:278–285Google Scholar
  221. Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover Trifolium repens roots. Appl Environ Microbiol 57:434–439Google Scholar
  222. Nakano A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9:41–47CrossRefGoogle Scholar
  223. Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145Google Scholar
  224. Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000Google Scholar
  225. Nicholls VO (1952) Studies on the association between certain soil fungi and the roots of some members of the Liliiflorae. PhD dissertation, Department of Botany, University of BristolGoogle Scholar
  226. Nicolson TH (1959) Mycorrhizae in the Graminae. I. Vesicular arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438Google Scholar
  227. Nicolson TH (1960) Mycorrhizae in the Gramineae. II. Development in different habitats, particularly sand dunes. Trans Br Mycol Soc 43:132–145Google Scholar
  228. Nicolson TH (1967) Vesicular-arbuscular mycorrhiza—a universal plant symbiosis. Science Progress, Oxford 55:561–581Google Scholar
  229. Nicolson TH, Gerdemann JW (1968) Mycorrhizal Endogone species. Mycologia 60:313–325Google Scholar
  230. Nicolson TH, Johnston C (1979) Mycorrhiza in the Graminae. III. Glomus fasciculatus as the endophyte of pioneer grasses in a maritime sand dune. Trans Br Mycol Soc 72:261–268Google Scholar
  231. O’Brien DG, McNaughton EJ (1928) Endotrophic mycorrhiza of strawberries and its significance. Research Bulletin W. Scotland Agricultural College 1:1–32Google Scholar
  232. O’Connor PJ, Smith SE, Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209–218CrossRefGoogle Scholar
  233. O’Halloran IP, Miller MH, Arnold G (1986) Absorption of P by corn (Zea mays L.) as influenced by soil disturbance. Can J Soil Sci 66:287–302Google Scholar
  234. Orlovich D, Ashford AE (1993) Polyphosphate granules are an artefact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma 173:91–105Google Scholar
  235. Owusu-Bennoah E, Mosse B (1979) Plant growth responses to vesicular-arbuscular mycorrhiza. XI. Field inoculation responses in barley, lucerne and onion. New Phytol 83:671–679Google Scholar
  236. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporter include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329CrossRefPubMedGoogle Scholar
  237. Parent S (1990) Problems associated with the formulation of a premixed medium containing VAM. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae, University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 234Google Scholar
  238. Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with 32P and 33P. New Phytol 124:489–494Google Scholar
  239. Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal Citrus at high-phosphorus supply. Plant Physiol 101:1063–1071Google Scholar
  240. Peterson L, Schelkle M (eds) (1993) Abstracts of the 9th North American Conference on Mycorrhizae. University of Guelph, Guelph, Ontario, CanadaGoogle Scholar
  241. Petri L (1903) Ricerche sul signifacto morfologica del prosporoidi (sporangioli di Janse) nelle micorrize endotrofiche. Nuovo G Bot Ital 10:541Google Scholar
  242. Peuss H (1958) Untersuchungen zur Ökologie und Bedeutung der Tabakmycorrhiza. Arch Microbiol 29:112–142Google Scholar
  243. Peyronel B (1923) Fructification de l’endophyte à arbuscules et à vesicules des mycorhizes endotrophes. Bull Soc Mycol Fr 39:119–126Google Scholar
  244. Peyronel B (1924) Specie di “Endogone” produttrici di micorize endotrofiche. Boll Stn Patol Veg Roma 5:73–75Google Scholar
  245. Peyronel B (1937) Le “Endogone” quasi produttrici di micorize endotrofiche nelle Fanerogame alpestri. Nuovo G Bot Ital N S 44:584–586Google Scholar
  246. Peyronel B (1940) Prime osservazioni sui rapporti tra luce e simbiosi micorrizica. Annuar. Lab. Chanousia Giardino Botanico dell’Ordine Mauiziana al Piccolo San Bernardo 4:3–19Google Scholar
  247. Peyronel B (1950) L’étude des mycorhizes par l’observation directe. In: Proceedings of the Seventh International Botanical Congress, Stockholm 1950, pp 436–438Google Scholar
  248. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160Google Scholar
  249. Plenchette C, Furlan V, Fortin JA (1981) Growth stimulation of apple trees in unsterilized soil under field conditions with VA mycorrhiza inoculation. Can J Bot 59:2003–2008Google Scholar
  250. Ponton F, Piché Y, Parent S, Caron M (1990a) The use of vesicular-arbuscular mycorrhizae in Boston fern production. I. Effects of peat-based mixes. HortScience 25:183–189Google Scholar
  251. Ponton F, Piché Y, Parent S, Caron M (1990b) The use of vesicular-arbuscular mycorrhizae in Boston fern production. II. Evaluation of four inocula. HortScience 25:416–419Google Scholar
  252. Porter WM, Robson AD, Abbott LK (1987) Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24:659–662Google Scholar
  253. Powell CL (1976) Mycorrhizal fungi stimulate clover growth in New Zealand hill country soils. Nature 264:436–438Google Scholar
  254. Powell CL, Bagyaraj DJ (1984) VA Mycorrhiza. CRC Press, Boca Raton, Fla.Google Scholar
  255. Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466PubMedGoogle Scholar
  256. Rawald W, Lyr H (1963) Mykorrhiza—Internationales Mykorrhizasymposium, Weimar 1960. Gustav Fischer, JenaGoogle Scholar
  257. Rayner MC (1916) Recent developments in the study of endotrophic mycorhiza. New Phytol 15:161–175Google Scholar
  258. Rayner MC (1926–1927) Mycorrhiza. New Phytol 25:1–50, 65–108, 171–190, 248–263 338–372, 26:22–45, 85–114Google Scholar
  259. Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning, Chapman and Hall, New York, pp 102–133Google Scholar
  260. Read DJ, Koucheki HK, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol 77:641–653Google Scholar
  261. Read DJ, Lewis DH, Fitter AH, Alexander IJ (1992) Mycorrhizas in ecosystems. CAB International, Wallingford, OxonGoogle Scholar
  262. Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhiza fungi within colonized roots. Mycorrhiza 10:73–80Google Scholar
  263. Reid CPP, Bowen GD (1979) Effects of soil moisture on VA mycorrhiza formation and root development in Medicago. In: Harley JL (ed) The soil-root interface. Academic Press, LondonGoogle Scholar
  264. Ritz K, Newman EI (1985) Evidence for rapid cycling of phosphorus from dying roots to living plants. Oikos 45:174–180Google Scholar
  265. Robson AD, Abbott LK, Malajczuk N (1994) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer, DordrechtGoogle Scholar
  266. Rosewarne GM, Barker SJ, Smith SE, Smith FA, Schachtman DP (1999) A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol 144:507–516Google Scholar
  267. Ross JP, Harper JA (1970) Effect of Endogone mycorrhiza on soybean yields. Phytopathology 60:1552–1556Google Scholar
  268. Ryan MH, McCully ME, Huang CX (2003) Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. New Phytol 160:429–441CrossRefGoogle Scholar
  269. Sanders FE, Tinker PB (1971) Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233:278–279Google Scholar
  270. Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pest Sci 4:385–395Google Scholar
  271. Sanders FE, Mosse B, Tinker PB (eds) (1975) Endomycorrhizas. Proceedings of a symposium held at the University of Leeds, 22–25 July 1974. Academic Press, LondonGoogle Scholar
  272. Scannerini S, Bellando M (1968) Sull’ultrastruttura delle micorrhize endotrofiche di Ornithogalum umbellatum L. in attivita vegetativa. Atti Accad Sci Torino 102:795–809Google Scholar
  273. Scannerini S, Bonfante P (1991) Bacteria and bacteria-like objects in endomycorrhizal fungi (Glomaceae). In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, Mass., pp 273–287Google Scholar
  274. Schenck NC (1982) Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, Minn.Google Scholar
  275. Schenck NC (1985) VA mycorrhizal fungi 1950 to the present: the era of enlightenment. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 56–60Google Scholar
  276. Schlicht A (1889) Beitrag zur Kenntniss der Verbreitung und Bedeutung der Mycorhizen. Landwirtschaftliche Jahrbücher 18:478–506Google Scholar
  277. Schüepp H, Miller DD, Bodmer M (1987) A new technique for monitoring hyphal growth of vesicular-arbuscular mycorrhizal fungi through soil. Trans Br Mycol Soc 89:429–435Google Scholar
  278. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421Google Scholar
  279. Schwab SM, Reeves FB (1981) The role of endomycorrhizae in revegetation practices in the semi-arid west. III. Vertical distribution of vesicular-arbuscular (VA) mycorrhiza inoculum potential. Am J Bot 68:1293–1297Google Scholar
  280. Schwab SM, Menge JA, Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol 117:387–398Google Scholar
  281. Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15Google Scholar
  282. Shibata K (1902) Cytologische Studien über die endotrophen Mycorrhizen. Jahrb Wiss Bot 37:643–684Google Scholar
  283. Simon L, Lalonde M, Bruns T (1990) Amplification and direct sequencing of ribosomal genes form VAM fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae, University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 265Google Scholar
  284. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295PubMedGoogle Scholar
  285. Simon L, Levesque RC, Lalonde M (1993) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl Environ Microbiol 59:4211–4215Google Scholar
  286. Siqueira JO, Sylvia D, Gibson J, Hubbel D (1985) Spores, germination, and germ tubes of vesicular-arbuscular mycorrhizal fungi. Can J Microbiol 31:965–997Google Scholar
  287. Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93Google Scholar
  288. Smith FA, Smith SE (1997) Structural diversity in vesicular-arbuscular mycorrhizal symbioses. New Phytol 137:373–388CrossRefGoogle Scholar
  289. Smith SE, Daft MJ (1975) Interactions between growth, phosphate content and nitrogen fixation in mycorrhizal and non-mycorrhizal Medicago sativa. Aust J Plant Physiol 4:403–413Google Scholar
  290. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San DiegoGoogle Scholar
  291. Smith SE, Smith FA, Jakobsen I (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20CrossRefPubMedGoogle Scholar
  292. Smith TF (1978) Some effects of crop protection chemicals on the distribution and abundance of vesicular-arbuscular endomycorrhizas. J Aust Inst Agric Sci 44:82–88Google Scholar
  293. Solaiman MZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538Google Scholar
  294. Sparling GP, Tinker PB (1975) Mycorrhizas in Pennine grassland. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds, 22–25 July 1974, Academic Press, LondonGoogle Scholar
  295. Stahl M (1949) Die Mycorrhiza der Lebermoose mit besonderer Berücksichtigung der thallosen Formen. Planta 37:103–148Google Scholar
  296. St Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332Google Scholar
  297. Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65:419–431Google Scholar
  298. Thaxter R (1922) A revision of the Endogoneae. Proc Am Acad Arts Sci 57:292–348Google Scholar
  299. Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38:847–867Google Scholar
  300. Tisdall JM, Oades JM (1979) Stabilisation of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429–441Google Scholar
  301. Trappe JM (1996) What is a mycorrhiza? In: Mycorrhizas in integrated systems from genes to plant development. Proceedings of the 4th European symposium on mycorrhizas. European Commission, Directorate-General XII, Science, Research and Development, Brussels, pp 3–6Google Scholar
  302. Trappe JM, Berch SM (1985) The prehistory of mycorrhizae: A.B. Frank’s predecessors. In: Proceedings of the 6th North American conference on mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 2–11Google Scholar
  303. Trappe JM, Schenck NC (1982) Taxonomy of the fungi forming endomycorrhizae. A. Vesicular-arbuscular mycorrhizal fungi (Endogonales) In: Schenck NC (ed), Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, Minn., pp 1–10Google Scholar
  304. Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Annu Rev Phytopathol 22:331–359CrossRefGoogle Scholar
  305. Tulasne LR, Tulasne C (1844) Fungi nonnulli hipogaei, novi v. minus cogniti auct. G Bot Ital 2:55–63Google Scholar
  306. Varma A (1998) Mycorrhiza manual. Springer, Berlin Heidelberg New YorkGoogle Scholar
  307. Walker C (1987) Current concepts in the taxonomy of the Endogonaceae. Proceedings of the 7th NACOM. IFAS, University of Florida, Gainesville, Fla.Google Scholar
  308. Warner A, Mosse B, Dingemann L (1985) The nutrient film technique for inoculum production. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 85–86Google Scholar
  309. Warnock AJ, Fitter AH, Usher MB (1982) The influence of a springtail Folsomia candida (Insecta, Collembola) on the mycorrhizal association of leek Allium porrum and the vesicular-arbuscular mycorrhizal endophyte Glomus fasciculatus. New Phytol 90:285–292Google Scholar
  310. Williams SE, Allen MF (1984) VA mycorrhiza and reclamation of arid and semi-arid lands. Wyoming Agricultural Experiment Station, University of Wyoming, Laramie, Wyo.Google Scholar
  311. Wood T (1985) Commercial pot culture inoculum production: quality control and other headaches. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae, Forest Research Laboratory, Oregon State University, Corvallis, Ore., p 84Google Scholar
  312. Woolhouse H (1975) Membrane structure and transport problems considered in relation to phosphorus and carbohydrate movements and the regulation of endotrophic mycorrhizal associations. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds, 22–25 July 1974, Academic Press, London, pp 209–239Google Scholar
  313. Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586Google Scholar
  314. Wyss P, Boller T, Wiemken A (1991) Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in soybean roots. Experientia 47:395–399Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of HorticultureThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.TetburyUK

Personalised recommendations