Mycorrhiza

, Volume 14, Issue 2, pp 111–117 | Cite as

Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment

  • Armelle Gollotte
  • Diederik van Tuinen
  • David Atkinson
Original Paper

Abstract

Analysis of arbuscular mycorrhizal (AM) fungal diversity through morphological characters of spores and intraradicular hyphae has suggested previously that preferential associations occur between plants and AM fungi. A field experiment was established to investigate whether AM fungal diversity is affected by different host plants in upland grasslands. Indigenous vegetation from plots in an unimproved pasture was replaced with monocultures of either Agrostis capillaris or Lolium perenne. Modification of the diversity of AM fungi in these plots was evaluated by analysis of partial sequences in the large subunit (LSU) ribosomal RNA (rDNA) genes. General primers for AM fungi were designed for the PCR amplification of partial sequences using DNA extracted from root tissues of A. capillaris and L. perenne. PCR products were used to construct LSU rDNA libraries. Sequencing of randomly selected clones indicated that plant roots were colonised by AM fungi belonging to the genera Glomus, Acaulospora and Scutellospora. There was a difference in the diversity of AM fungi colonising roots of A. capillaris and L. perenne that was confirmed by PCR using primers specific for each sequence group. These molecular data suggest the existence of a selection pressure of plants on AM fungal communities.

Keywords

Arbuscular mycorrhizal fungi LSU rDNA Diversity Grasslands Ecological specificity 

Notes

Acknowledgement

This work was financially supported by the Scottish Executive Environment and Rural Affairs Department (Micronet initiative).

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  2. Bever JD, Morton JB, Antonovics A, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71–82Google Scholar
  3. Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130CrossRefGoogle Scholar
  4. Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265Google Scholar
  5. Clapp JP, Rodriguez A, Dodd JC (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 149:539–554Google Scholar
  6. Engels WR (1993) Contributing software to the Internet: the Amplify program. Trends Biochem Sci 18:448–450PubMedGoogle Scholar
  7. Eom AH, Hartnett DC, Wilson GWT (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444CrossRefGoogle Scholar
  8. Gange AC, Brown VK, Sinclair GS (1993) Vesicular-arbuscular mycorrhizal fungi — a determinant of plant community structure in early succession. Funct Ecol 7:616–622Google Scholar
  9. Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–71Google Scholar
  10. Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162Google Scholar
  11. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  12. Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195Google Scholar
  13. Hetrick BAD, Bloom J (1986) The influence of host plant on production and colonization ability of vesicular-arbuscular mycorrhizal spores. Mycologia 78:32–36Google Scholar
  14. Jacquot E, van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V (2000) Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 226:179–188Google Scholar
  15. Jacquot-Plumey E, van Tuinen D, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2001) 25S rDNA-based molecular monitoring of glomalean fungi in sewage sludge-treated field plots. Environ Microbiol 3:525–531PubMedGoogle Scholar
  16. Johnson NC, Pfleger FL, Crookston RK, Simmons SR, Copeland PJ (1991) Vesicular-arbuscular mycorrhizas respond to corn and soybean cropping history. New Phytol 117:657–663Google Scholar
  17. Kjoller R, Rosendahl S (2000) Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (Single Stranded Conformation Polymorphism). Plant Soil 226:189–196Google Scholar
  18. Kjoller R, Rosendahl S (2001) Molecular diversity of glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field grown peas. Mycol Res 105:1027–1032Google Scholar
  19. McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122Google Scholar
  20. Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000Google Scholar
  21. Nicolson T, Gerdemann JW (1968) Mycorrhizal Endogone species. Mycologia 60:313–325Google Scholar
  22. O'Connor PJ, Smith SE, Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209–218CrossRefGoogle Scholar
  23. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921CrossRefPubMedGoogle Scholar
  24. Remy W, Taylor TN, Hass H, Kerp H (1994) Four-hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedGoogle Scholar
  25. Rodriguez A, Dougall T, Dodd JC, Clapp JP (2001) The large subunit ribosomal RNA genes of Entrophospora infrequens comprise sequences related to two different glomalean families. New Phytol 152:159–167Google Scholar
  26. Rodwell JS (1992) Grassland and montane communities. British plant communities, vol 3. Cambridge University Press, CambridgeGoogle Scholar
  27. Sanders IR, Fitter AH (1992) Evidence for differential responses between host fungus combinations of vesicular arbuscular mycorrhizas from a grassland. Mycol Res 96:415–419Google Scholar
  28. Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA polymorphisms among and within spores of the Glomales — application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419–427Google Scholar
  29. Schenck NC, Kinloch RA (1980) Incidence of mycorrhizal fungi on six field crops in monoculture on a newly cleared woodland site. Mycologia 72:445–456Google Scholar
  30. Smith MD, Hartnett DC, Wilson GWT (1999) Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia 121:574–582CrossRefGoogle Scholar
  31. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San DiegoGoogle Scholar
  32. Streitwolf-Engel R, van der Heijden MGA, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82:2846–2859Google Scholar
  33. Taylor J, Harrier L (2000) A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. cv. Glen Prosen (red raspberry). Plant Soil 225:53–61Google Scholar
  34. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  35. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221Google Scholar
  36. Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization. Mycorrhiza 8:203–206Google Scholar
  37. Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169–174Google Scholar
  38. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young PW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564CrossRefPubMedGoogle Scholar
  39. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  40. van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887PubMedGoogle Scholar
  41. Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Armelle Gollotte
    • 1
    • 3
  • Diederik van Tuinen
    • 2
  • David Atkinson
    • 1
  1. 1.Scottish Agricultural CollegeCrop Science DepartmentEdinburgh EH9 3JGUK
  2. 2.Unité Mixte de Recherche 1088 INRA/Université de Bourgogne et FRE/CNRS 2625 Plante-Microbe-EnvironnementINRA-CMSEDijon cedexFrance
  3. 3.Unité Mixte de Recherche 1088 INRA/Université de Bourgogne et FRE/CNRS 2625 Plante-Microbe-EnvironnementINRA-CMSEDijon cedexFrance

Personalised recommendations