uwf UmweltWirtschaftsForum

, Volume 24, Issue 4, pp 325–335 | Cite as

Ecological sustainability of material resources – Why material efficiency just isn’t enough

  • Carsten Deckert


In a finite system like the earth economical use and preservation of resources is mandatory. The aspiration to fulfil the demand of an increasing population with raised standards of living and to generate on-going economic growth leads to certain dilemmas concerning material resources. The paper will elaborate on the differences of economics with relatively scarce resources and economics with absolutely scarce resources with a focus on material resources. Currently many sustainability initiatives try to solve the problem of scarce resources by increasing efficiency. But general economic principles which increase efficiency such as economies of scale and learning curve effects demand high quantities and high lot sizes. Thus, efficiency in an economic sense does not always mean resource efficiency, which should not only include material efficiency but also preservation of resource availability and resource stewardship. If sustainability research takes the definition of the Brundtland report seriously and wants to meet “the needs of the present without compromising the ability of future generations to meet their own needs” then in the long run there needs to be a shift to renewable resources. This shift leads to new problems concerning overuse and tragedy of the commons as well as competition for acreage. The paper argues that sustainability research needs to change its focus from a mere increase of material efficiency to the problems of resource stewardship and preservation of natural resources taking a system dynamics perspective. It will elaborate on some of the possible directions these more wide-spread approaches may lead to.


Supply Chain Renewable Resource Resource Consumption Rebound Effect Resource Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert M (2015) Gegensätze der Nachhaltigkeit. Working Paper 4‑1 Working Papers of the Chair for Innovation Research and Technology Management (BWL IX). TU Chemnitz, Chemnitz Google Scholar
  2. Altvater, E (2015a) Der Grundwiderspruch des 21. Jahrhunderts. In: Le Monde diplomatique (ed.) Atlas der Globalisierung. Taz, Berlin, 16–19Google Scholar
  3. Altvater, E (2015b) Das Erdzeitlater des Kapitals. In: Le Monde diplomatique (ed.) Atlas der Globalisierung. Taz, Berlin, 44–47Google Scholar
  4. Arrow K, Dasgupta P, Goulder L, Daily G, Ehrlich P, Heal G, Levin S, Mäler K‑G, Schneider S, Starrett D, Walker B (2004) Are we consuming too much? J Econ Perspect 18(3):147–172CrossRefGoogle Scholar
  5. Bartlett AA (2012) The meaning of sustainability. Teach Clgh Sci Soc Educ Newsl 31(1):1–17Google Scholar
  6. Bpb = Bundeszentrale für politische Bildung (2014) Entwicklung des grenzüberschreitenden Warenhandels. Accessed 17. Dez 2014Google Scholar
  7. Braungart M, McDonough W (2009) Cradle to cradle: re-making the way we make things. Vintage Books, New YorkGoogle Scholar
  8. Cachon G, Terwiesch C (2012) Matching supply with demand: an introduction to operations management. McGraw Hill, BostonGoogle Scholar
  9. Chertow MR (2001) The IPAT equation and its variants. Changing views of technology and environmental impact. J Ind Ecol 4(4):13–29CrossRefGoogle Scholar
  10. Chopra S, Meindl P (2013) Supply chain management. strategy, planning, and operation, 5th edn. Pearson, HarlowGoogle Scholar
  11. Commoner B (1972) A bulletin dialogue on “the closing circle”: response. Bull At Sci 28(5):17, 42–56Google Scholar
  12. Commoner B, Corr M, Stamler PJ (1971) The closing circle: nature, man, and technology. Knopf, New YorkGoogle Scholar
  13. Constanza R, Ruth M (1998) Using dynamic modeling to scope environmental problems and build consensus. Environ Manage 22(2):183–195CrossRefGoogle Scholar
  14. Dahmus JB (2014) Can efficiency improvements reduce resource consumption? A historical analysis of ten activities. J Ind Ecol 18(6):883–897CrossRefGoogle Scholar
  15. Daily GC, Ehrlich PR (1992) Population, sustainability, and earth’s carrying capacity. Bioscience 42(10):761–771CrossRefGoogle Scholar
  16. Daniels P, Bradshaw M, Shaw D, Sidaway J (2012) An introduction to human geography, 4th edn. Pearson, HarlowGoogle Scholar
  17. Deckert C (2015) Nachhaltige Logistik. Verbesserte Ressourcennutzung und Umweltverträglichkeit durch Green Logistics und City-Logistik. In: Deckert C (ed) CSR & Logistik. Spannungsfelder Green Logistics und City Logistik. Springer, BerlinGoogle Scholar
  18. Deckert C, Fröhlich E (2014) Green Logistics: Framework zur Steigerung der logistischen Nachhaltigkeit. Suppl Chain Manag II/2014(2014):13–18Google Scholar
  19. Dietz T, Rosa EA (1994) Rethinking the environmental impacts of population, affluence and technology. Hum Ecol Rev 1:277–300Google Scholar
  20. Dietz T, Rosa EA, York R (2012) Environmentally efficient well-being: is there a Kuznets curve? Appl Geogr 32(2012):21–28CrossRefGoogle Scholar
  21. Ehrlich PR, Holdren JP (1971) Impact of population growth. Science 171(3977):1212–1217CrossRefGoogle Scholar
  22. Ehrlich PR, Holdren JP (1972) A bulletin dialogue on “the closing circle”: critique. Bull At Sci 28(5):16, 18–27Google Scholar
  23. Ehrlich PR, Ehrlich AH, Holdren JP (1975) Humanökologie. Springer, Berlin u. a.CrossRefGoogle Scholar
  24. Forrester JW (2013) Industrial dynamics. Martino Publishing, Mansfield CentreGoogle Scholar
  25. Gans O, Jöst F (2005) Decomposing the impact of population growth on environmental deterioration. Discussion Paper Series, vol. 422. University of Heidelberg, HeidelbergGoogle Scholar
  26. Hardin G (1968) Tragedy of the commones. Science 162:1243–1248CrossRefGoogle Scholar
  27. Hartwig K‑H (2007) Umweltökonomie. In: Bender D et al (ed) Vahlens Kompendium der Wirtschaftstheorie und Wirtschaftspolitik, 7th edn. Vahlen, München, pp 129–170Google Scholar
  28. Heck S, Rogers M, Carroll P (2014) Resource revolution. How to capture the biggest business opportunity in a century. Amazon Publishing, SeattleGoogle Scholar
  29. Heizer J, Render B (2014) Principles of operations management. Sustainability and supply chain management, 9th edn. Pearson, HarlowGoogle Scholar
  30. Holm S‑O, Englund G (2008) Increased ecoefficiency and gross rebound effect: evidence from USA and six European countries 1960–2002. Soc Econ 68(2009):879–887Google Scholar
  31. Kanning H (2013) Nachhaltige Entwicklung – Die gesellschaftliche Herausforderung für das 21. Jahrhundert. In: Baumast A, Pape J (eds) Betriebliches Nachhaltigkeitsmanagement. Ulmer, Stuttgart, pp 21–43Google Scholar
  32. Kranert M, Cord-Landwehr K (2010) Einführung in die Abfallwirtschaft, 4th edn. Vieweg+Teubner, WiesbadenCrossRefGoogle Scholar
  33. Martens H (2011) Recyclingtechnik. Fachbuch für Lehre und Praxis. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  34. Meadows D, Meadows D (1972) The limits to growth. A report for the club of rome’s project on the predicament of mankind. Universe Publishing, New YorkGoogle Scholar
  35. Meyer WB (1996) Human impact on the earth. Cambridge University Press, CambridgeGoogle Scholar
  36. Müller-Christ G (2014) Nachhaltiges Management: Einführung in Ressourcenorientierung und widersprüchliche Managementrationalitäten. UTB, Nomos, Baden-BadenGoogle Scholar
  37. Nentwig W (2005) Humanökologie. Fakten – Argumente – Ausblicke, 2nd edn. Springer, Berlin u. aGoogle Scholar
  38. Paech N (2012) Befreiung vom Überfluss. Auf dem Weg in die Postwachstumsökonomie. oekom, MünchenGoogle Scholar
  39. Polimeni JM (2008) Empirical evidence for the Jevons paradox. In: Polimeni JM, Mayumi K, Giampietro M, Alcott B (eds) The Jevons paradox and the myth of resource efficiency improvements. Earthscan, LondonGoogle Scholar
  40. Porter ME (1998) Competitive strategy. Techniques for analyzing industries and competitors. Free Press, New YorkGoogle Scholar
  41. Pufé I (2012) Nachhaltigkeit. UTB, KonstanzCrossRefGoogle Scholar
  42. Reuter M (2007) Methodik der Werkstoffauswahl. Der systematische Weg zum richtigen Material. Hanser, MünchenGoogle Scholar
  43. Ruth M, Hannon B (2012) Modeling dynamic economic systems (modeling dynamic systems). Springer, BerlinCrossRefGoogle Scholar
  44. Santarius T (2012) Green growth unravelled. How rebound effects baffle sustainability targets when the economy keeps growing. Heinrich Böll Foundation, BerlinGoogle Scholar
  45. Santarius, T (2015) Umweltfreundlich mehr verbrauchen. In: Le Monde diplomatique (ed.) Atlas der Globalisierung. Taz, Berlin, 56–57Google Scholar
  46. Schettkat R (2009) Analyzing rebound effects. Wuppertal Papers, vol. 177. Wuppertal Institute for Climate, Environment and Energy, Wuppertal, ISSN 0949–5266Google Scholar
  47. Schwister K (2010) Taschenbuch der Umwelttechnik, 2nd edn. Hanser, LeipzigGoogle Scholar
  48. Scott JC (1998) Seeing like a state. How certain schemes to improve the human condition have failed. Yale University Press, New Haven LondonGoogle Scholar
  49. Senge PM, Smith B, Kruschwitz N, Laur J, Schley S (2008) The necessary revolution. How individuals and organisations are working together to create a sustainable world. Doubleday, New YorkGoogle Scholar
  50. Sinding-Larsen R, Wellmer F‑W (2012) Non-renewable resource issues: geoscientific and societal challenges: an introduction. In: Sinding-Larsen R, Wellmer F‑W (eds) Non-renewable resource issues: geoscientific and societal challenges. Springer, Berlin, pp 1–19CrossRefGoogle Scholar
  51. Sorrell S (2010) Mapping rebound effects from sustainable behaviours. Key concepts and literature review. SLRG Working Paper 01-10 (ISSN: 2050-4446). Accessed 22 Jun 2016Google Scholar
  52. Sterman JD (2000) Business dynamics: system thinking and modeling for a complex world. McGraw Hill, BostonGoogle Scholar
  53. Tenner E (1997) Why things bite back: technology and the revenge of unintended consequences. Vintage Books, New YorkGoogle Scholar
  54. UN = United Nations, Department of Economic and Social Affairs, Population Division (2014) World urbanization prospects: the 2014 revision, highlights (ST/ESA/SER.A/352). UN, Department of Economic and Social Affairs, Population Division, New YorkGoogle Scholar
  55. UN = United Nations, Department of Economic and Social Affairs, Population Division (2015) World population prospects: the 2015 revision, key findings and advance tables. Working Paper No. ESA/P/WP.241Google Scholar
  56. UNDP = United Nations Development Programme (2014) Human development report 2014 – sustaining human progress: reducing vulnerabilities and building resilienceGoogle Scholar
  57. Waggoner PE, Ausubel JH (2002) A framework for sustainability science: a renovated IPAT identity. Proc Natl Acad Sci 99(12):375–390CrossRefGoogle Scholar
  58. WCED = World Commission on Environment and Development (1988) Our common future. Oxford University Press, OxfordGoogle Scholar
  59. Wellmer F‑W (2012) Discovery and sustainability. In: Sinding-Larsen R, Wellmer F‑W (eds) Non-renewable resource issues: geoscientific and societal challenges. Springer, Berlin, pp 35–43CrossRefGoogle Scholar
  60. Wellmer F‑W, Steinbach V (2011) Is a road to sustainable use of non-renewable mineral raw materials possible? Proceedings Conference Sustainable Development in the Minerals Industry (SDIMI), Aachen, Jun 2011, pp 14–17Google Scholar
  61. Weston RF, Ruth M (1997) A dynamic, hierarchical approach to understanding and managing natural economic systems. Ecol Econ 21(1997):1–17CrossRefGoogle Scholar
  62. Willke G (2006) Pocket Wirtschaft. Ökonomische Grundbegriffe, 2nd edn. bpb, BonnGoogle Scholar
  63. World Bank (2016a) Birth rate, crude (per 1,000 people). Accessed 01 Jul 2016Google Scholar
  64. World Bank (2016b) Fertility rate, total (births per woman). Accessed 01 Jul 2016Google Scholar
  65. World Bank (2016c) GDP growth (annual %). Accessed 30 Jun 2016Google Scholar
  66. Yellishetty M, Haque N, Dubreuil A (2012) Issues and challenges in life cycle assessment in the minerals and metals sector: a chance to improve raw materials efficiency. In: Sinding-Larsen R, Wellmer F‑W (eds) Non-renewable resource issues: geoscientific and societal challenges. Springer, Berlin, pp 229–246CrossRefGoogle Scholar
  67. York R, Rosa EA, Dietz T (2003) STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol Econ 46(2003):351–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Logistics and Supply Chain Management, CBS Cologne Business School GmbHEuropean University of Applied SciencesKölnGermany

Personalised recommendations