Advertisement

Fabrication, physical and optical properties of functionalized cellulose based polymethylmethacrylate nanocomposites

  • Magdi E. GibrilEmail author
  • Prabashni Lekha
  • Jerome Andrew
  • Bruce Sithole
  • Deresh Ramjugernath
  • Ajit KhoslaEmail author
Technical Paper
  • 24 Downloads

Abstract

An organic–inorganic functionalized nano-filler (CNC–TiO2), was prepared by loading titanium dioxide nanoparticles (TiO2) onto the crystalline nanocellulose (CNC) surface by using methacrylatesilane as cross-link agent in order to enhance compatibility between nanofiller and matrix (PMMA). Nanocomposite films (PMMA/CNC–TiO2) were prepared by free radical copolymerization of various amount (0–5 wt%) of functionalized nanofiller (CNC–TiO2) with methylmethacrylate (MMA) as main monomer, followed by solvent casting technique. The films were characterized using TEM, FTIR, FEG-SEM, and XRD, TGA, and UV–VIS spectroscopy. The results of TEM and FTIR confirmed the modification of CNC with TiO2 and the interaction between the CNC–TiO2 nanofiller and PMMA. FEG-SEM results showed a uniform dispersion of the nanofiller in the PMMA matrix whereas EDX confirmed the presence of TiO2 in the nanocomposite films. The effect of the nanofiller on the mechanical properties of PMMA was also investigated and the results showed significant improvement in tensile and modulus strengths with increasing amounts of nanofiller. In addition, TGA results demonstrated remarkable improvements in the thermal properties of the PMMA/CNC–TiO2 nanocomposite films UV results showed a response to UV absorbance due to incorporation of TiO2. Nanocomposite films can be beneficial for a variety of applications such as coating materials for windows, shelters, glazing, optical filters, and as hard packaging with UV-blocking properties.

Notes

References

  1. Abdul Khalil HPS, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polymers 99:649.  https://doi.org/10.1016/j.carbpol.2013.08.069 CrossRefGoogle Scholar
  2. Chatterjee A (2010) Properties improvement of PMMA using nano TiO2. J Appl Polymer Sci 118:2890.  https://doi.org/10.1002/app.32567 CrossRefGoogle Scholar
  3. Chen L-S, Huang Z-M, Dong G-H et al (2009) Development of a transparent PMMA composite reinforced with nanofibers. Polymer Compos 30:239.  https://doi.org/10.1002/pc.20551 CrossRefGoogle Scholar
  4. Cheng S-K, Chen C-Y (2004) Mechanical properties and strain-rate effect of EVA/PMMA in situ polymerization blends. Eur Polymer J 40:1239.  https://doi.org/10.1016/j.eurpolymj.2003.11.022 CrossRefGoogle Scholar
  5. Colom X, Carrillo F, Nogués F, Garriga P (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degrad Stabil 80:543.  https://doi.org/10.1016/S0141-3910(03)00051-X CrossRefGoogle Scholar
  6. Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polymers 87:2488.  https://doi.org/10.1016/j.carbpol.2011.11.015 CrossRefGoogle Scholar
  7. El-Zaher N, Melegy M, Guirguis O (2014) Thermal and structural analyses of PMMA/TiO2 nanoparticles composites. Natural Sci 6:859CrossRefGoogle Scholar
  8. Fahma F, Hori N, Iwata T, Takemura A (2013) The morphology and properties of poly (methyl methacrylate)-cellulose nanocomposites prepared by immersion precipitation method. J Appl Polymer Sci 128:1563.  https://doi.org/10.1002/app.38312 CrossRefGoogle Scholar
  9. Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy-thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269CrossRefGoogle Scholar
  10. Gibrila ME, Ahmed KK, Lekha P, Sitholec B, Khosla A, Furukawa H (2019) Effect of Nanocrystalline Cellulose and Zinc Oxide Hybrid Organic-Inorganic nanofilleron the physical properties of polycaprolactone nanocomposite films. Microsyst Technol.  https://doi.org/10.1007/s00542-019-04497-x(Early access online) CrossRefGoogle Scholar
  11. Gorenšek M, Sluga F (2004) Modifying the UV blocking effect of polyester fabric. Text Res J 74:469.  https://doi.org/10.1177/004051750407400601 CrossRefGoogle Scholar
  12. NN Hafizah, LN Ismail, MZ Musa, MH Mamat, M Rusop (2012) Business, engineering and industrial applications (ISBEIA). In: 2012 IEEE SymposiumGoogle Scholar
  13. Hajlane A, Kaddami H, Joffe R, Wallström L (2013) Design and characterization of cellulose fibers with hierarchical structure for polymer reinforcement. Cellulose 20:2765.  https://doi.org/10.1007/s10570-013-0044-y CrossRefGoogle Scholar
  14. Han G, Huan S, Han J, Zhang Z, Wu Q (2014) Effect of acid hydrolysis conditions on the properties of cellulose nanoparticle-reinforced polymethylmethacrylate composites. Materials 7:16CrossRefGoogle Scholar
  15. Isobe N, Sekine M, Kimura S, Wada M, Kuga S (2011) Anomalous reinforcing effects in cellulose gel-based polymeric nanocomposites. Cellulose 18:327CrossRefGoogle Scholar
  16. Jia Z, Wang Z, Xu C et al (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271(1–2):395–400.  https://doi.org/10.1016/s0921-5093(99)00263-4 CrossRefGoogle Scholar
  17. Khaled SM, Sui R, Charpentier PA, Rizkalla AS (2007) Formation of titania nanofibers: a direct sol − gel route in supercritical CO2. Langmuir 23:3988.  https://doi.org/10.1021/la062879n CrossRefGoogle Scholar
  18. Khan A, Khan RA, Salmieri S et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601.  https://doi.org/10.1016/j.carbpol.2012.07.037 CrossRefGoogle Scholar
  19. Krul LP, Yakimtsova LB, Egorova EL, Matusevich YI, Selevich KA, Kurtikova AL (2009) Preparation and thermal degradation of methyl methacrylate-methacrylic acid copolymers. Russian J Appl Chem 82:1636.  https://doi.org/10.1134/s1070427209090237 CrossRefGoogle Scholar
  20. Laachachi A, Cochez M, Ferriol M, Lopez-Cuesta JM, Leroy E (2005) Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly (methyl methacrylate) (PMMA). Mater Lett 59:36.  https://doi.org/10.1016/j.matlet.2004.09.014 CrossRefGoogle Scholar
  21. Litter MI (1999) Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B Env 23:89.  https://doi.org/10.1016/S0926-3373(99)00069-7 CrossRefGoogle Scholar
  22. Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685.  https://doi.org/10.1016/j.biortech.2010.02.045 CrossRefGoogle Scholar
  23. Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A (2018) Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165(8):B3137–B3156.  https://doi.org/10.1149/2.0191808jes CrossRefGoogle Scholar
  24. Nevo Y, Peer N, Yochelis S, Igbaria M, Meirovitch S, Shoseyov O, Paltiel Y (2015) Nano bio optically tunable composite nanocrystalline cellulose films. RSC Advances 5(10):7713–7719.  https://doi.org/10.1039/c4ra11840e CrossRefGoogle Scholar
  25. Nussbaumer RJ, Caseri WR, Smith P, Tervoort T (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288:44.  https://doi.org/10.1002/mame.200290032 CrossRefGoogle Scholar
  26. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187.  https://doi.org/10.1016/j.polymer.2008.04.017 CrossRefGoogle Scholar
  27. Sain S, Sengupta S, Kar A et al (2014) Effect of modified cellulose fibres on the biodegradation behaviour of in situ formed PMMA/cellulose composites in soil environment: isolation and identification of the composite degrading fungus. Polym Degrad Stabil 99:156.  https://doi.org/10.1016/j.polymdegradstab.2013.11.012 CrossRefGoogle Scholar
  28. Sain S, Ray D, Mukhopadhyay A (2015) Improved mechanical and moisture resistance property of in situ polymerized transparent PMMA/cellulose composites. Polymer Compos 36:1748.  https://doi.org/10.1002/pc.23102 CrossRefGoogle Scholar
  29. Sang L, Zhao Y, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem Rev 114:9283.  https://doi.org/10.1021/cr400629p CrossRefGoogle Scholar
  30. Schütz C, Sort J, Bacsik Z et al (2012) Hard and transparent films formed by nanocellulose–TiO2 nanoparticle hybrids. PLoS One 7:e45828.  https://doi.org/10.1371/journal.pone.0045828 CrossRefGoogle Scholar
  31. Sciancalepore C, Cassano T, Curri ML et al (2008) TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material. Nanotechnology 19:205705CrossRefGoogle Scholar
  32. Stevanovic A, Büttner M, Zhang Z, Yates JT (2012) Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc 134:324.  https://doi.org/10.1021/ja2072737 CrossRefGoogle Scholar
  33. Sukumaran SK, Kobayashi T, Takeda S, Khosla A, Furukawa H, Sugimoto M (2019) Electrical conductivity and linear rheology of multiwalled carbon nanotube/acrylonitrile butadiene styrene polymer nanocomposites prepared by melt mixing and solution casting. J Electrochem Soc 166(9):B3091–B3095.  https://doi.org/10.1149/2.0171909jes CrossRefGoogle Scholar
  34. Thakur MK, Gupta RK, Thakur VK (2014a) Surface modification of cellulose using silane coupling agent. Carbohydr Polymers 111:849.  https://doi.org/10.1016/j.carbpol.2014.05.041 CrossRefGoogle Scholar
  35. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014b) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677.  https://doi.org/10.1039/C3RA46592F CrossRefGoogle Scholar
  36. Wang J, Ni X (2008) Interfacial structure of poly (methyl methacrylate)/TiO2 nanocomposites prepared through photocatalytic polymerization. J Appl Polymer Sci 108:3552.  https://doi.org/10.1002/app.28020 CrossRefGoogle Scholar
  37. Wittwer V (1994) Transparent insulation materials: an overview on past, present and future developments. Renew Energy 5:318.  https://doi.org/10.1016/0960-1481(94)90389-1 CrossRefGoogle Scholar
  38. Xu J-C, Liu W-M, Li H-L (2005) Titanium dioxide doped polyaniline. Mater Sci Eng C 25:444.  https://doi.org/10.1016/j.msec.2004.11.003 CrossRefGoogle Scholar
  39. Yuwono AH, Liu B, Xue J et al (2004) Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybrids. J Mater Chem 14:2978.  https://doi.org/10.1039/B403530E CrossRefGoogle Scholar
  40. Zhang J, Maurer FHJ, Yang M (2011) In situ formation of TiO2 in electrospun poly (methyl methacrylate) nanohybrids. J Phys Chem C 115:10431.  https://doi.org/10.1021/jp201613x CrossRefGoogle Scholar
  41. Zhao J, Milanova M, Warmoeskerken MMCG, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf A Physicochem Eng Aspects 413:273.  https://doi.org/10.1016/j.colsurfa.2011.11.033 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biobased Material and Green PapermakingQilu University of TechnologyJinanChina
  2. 2.Discipline of Chemical EngineeringUniversity of KwaZulu-NatalDurbanSouth Africa
  3. 3.CSIR/KZN, Biorefinery Industry Development Facility CentreDurbanSouth Africa
  4. 4.Department of Mechanical Systems EngineringYamagata UniversityYonezawa, YamagataJapan

Personalised recommendations