Advertisement

Microsystem Technologies

, Volume 26, Issue 3, pp 675–687 | Cite as

RF-MEMS for 5G applications: a reconfigurable 8-bit power attenuator working up to 110 GHz. Part 1: design concept, technology and working principles

  • J. IannacciEmail author
Technical Paper
  • 71 Downloads

Abstract

RF-MEMS technology is indicated as a key enabling solution to realise the high-performance and highly-reconfigurable passive components that future 5G communication standards will demand for. In this work, a novel design concept of an 8-bit reconfigurable power attenuator manufactured in the RF-MEMS technology available at the CMM-FBK, in Italy, is tested and discussed. In the current Part 1 of the contribution, the RF-MEMS power attenuator design concept is discussed. The device features electrostatically controlled MEMS ohmic switches, in order to select/deselect resistive loads (both in series and shunt configuration) that attenuate the RF signal, and comprises eight cascaded stages (i.e. 8-bit), thus implementing 256 different network configurations. In Part 2 of the article, fabricated samples are measured (S-parameters) from 10 MHz to 110 GHz in a wide range of different configurations, and modelled/simulated in with a Finite Element Method software tool. Despite the attenuator complexity, the simulation approach leads to accurate prediction of the experimental behaviour. The device exhibits attenuation levels (S21) in the range from − 10 to − 60 dB, up to 110 GHz. In particular, the S21 shows flatness from 15 dB down to 3–5 dB, from 10 MHz to 50 GHz, while less linear traces up to 110 GHz. A comprehensive discussion is developed around the voltage standing wave ratio, employed as quality indicator for the attenuation levels. Finally, margins of improvement at design level are also discussed, in order to overcome the limitations of the presented RF-MEMS device.

Notes

References

  1. Allan R (2013) RF MEMS switches are primed for mass-market applications. http://mwrf.com/active-components/rf-mems-switches-are-primed-mass-market-applications. Accessed 21 March 2019
  2. Aratani K, French PJ, Sarro PM, Wolffenbuttel RF, Middelhoek S (1993) Process and design considerations for surface micromachined beams for a tuneable interferometer array in silicon. In: Proceedings of IEEE international conference on micro electro mechanical systems (MEMS), pp 230–235.  https://doi.org/10.1109/memsys.1993.296917
  3. Baldemair R, Irnich T, Balachandran K, Dahlman E, Mildh G, Selýn Y, Parkvall S, Meyer M, Osseiran A (2015) Ultra-dense networks in millimeter-wave frequencies. IEEE Commun Mag 53:202–208.  https://doi.org/10.1109/mcom.2015.7010535 CrossRefGoogle Scholar
  4. Bernstein J, Cho S, King AT, Kourepenis A, Maciel P, Weinberg M (1993) A micromachined comb-drive tuning fork rate gyroscope Micro Electro Mechanical Systems. In: Proceedings of IEEE international conference on micro electro mechanical systems (MEMS), pp 143–148.  https://doi.org/10.1109/memsys.1993.296932
  5. Bhushan N, Li J, Malladi D, Gilmore R, Brenner D, Damnjanovic A, Sukhavasi R, Patel C, Geirhofer S (2014) Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun Mag 52:82–89.  https://doi.org/10.1109/mcom.2014.6736747 CrossRefGoogle Scholar
  6. Boccardi F, Heath RW, Lozano A, Marzetta TL, Popovski P (2014) Five disruptive technology directions for 5G. IEEE Commun Mag 52:74–80.  https://doi.org/10.1109/mcom.2014.6736746 CrossRefGoogle Scholar
  7. Brown ER (1997) RF MEMS for digitally-controlled front-end components. In: Proceedings of IEEE international conference on innovative systems in silicon, p 338.  https://doi.org/10.1109/iciss.1997.630277
  8. Brown ER (1998) RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans Microw Theory Tech 46:1868–1880.  https://doi.org/10.1109/22.734501 CrossRefGoogle Scholar
  9. Cavendish Kinetics (2014) Nubia adopts Cavendish Kinetics’ SmarTune Antenna Tuning Solution for its new Z7 LTE Smartphone. http://www.cavendish-kinetics.com/news/news-releases/. Accessed 21 March 2019
  10. Cohn MB, Roehnelt R, Xu J-H, Shteinberg A, Cheung S (2002) MEMS packaging on a budget (fiscal and thermal). In: Proceedings of IEEE international conference on electronics, circuits and systems (ICECS), pp 287–290.  https://doi.org/10.1109/icecs.2002.1045390
  11. De Angelis G, Lucibello A, Marcelli R, Catoni S, Lanciano A, Buttiglione R, Dispenza M, Giacomozzi F, Margesin B, Maglione A, Erspan M, Combi C (2008) Packaged single pole double thru (SPDT) and true time delay lines (TTDL) based on RF MEMS switches. In: Proceedings of semiconductor conference (CAS), pp 227–230.  https://doi.org/10.1109/smicnd.2008.4703376
  12. De Silva AP, Hughes HG (2003) The package integration of RF-MEMS switch and control IC for wireless applications. IEEE Trans Adv Packag 26:255–260.  https://doi.org/10.1109/tadvp.2003.818056 CrossRefGoogle Scholar
  13. DeNatale J, Mihailovich R (2003) RF MEMS reliability. In: Proceedings of international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), pp 943–946.  https://doi.org/10.1109/sensor.2003.1216922
  14. Domingue F, Fouladi S, Mansour RR (2010) A reconfigurable impedance matching network using dual-beam MEMS switches for an extended operating frequency range. Proc IEEE MTT-S Int Microw Symp.  https://doi.org/10.1109/mwsym.2010.5515472 CrossRefGoogle Scholar
  15. Econocom (2016) Internet of Things. http://blog.econocom.com/en/blog/category/trends/internet-of-things-en/. Accessed 21 March 2019
  16. Entesari K, Obeidat K, Brown AR, Rebeiz GM (2007) A 25–75-MHz RF MEMS tunable filter. IEEE Trans Microw Theory Tech 55:2399–2405.  https://doi.org/10.1109/tmtt.2007.908674 CrossRefGoogle Scholar
  17. Feng Z, Zhang W, Su B, Harsh KF, Gupta KC, Bright V, Lee YC (1999) Design and modeling of RF MEMS tunable capacitors using electro-thermal actuators. Proc IEEE MTT-S Int Microw Symp.  https://doi.org/10.1109/mwsym.1999.780240 CrossRefGoogle Scholar
  18. Fettweis GP (2014) The Tactile Internet: applications and challenges. IEEE Veh Technol Mag 9:64–70.  https://doi.org/10.1109/mvt.2013.2295069 CrossRefGoogle Scholar
  19. Giacomozzi F, Mulloni V, Colpo S, Iannacci J, Margesin B, Faes A (2011) A flexible fabrication process for RF MEMS devices. Rom J Inf Sci Technol (ROMJIST) 14:259–268Google Scholar
  20. Giacomozzi F, Mulloni V, Colpo S, Faes A, Sordo G, Girardi S (2015) RF-MEMS packaging by using quartz caps and epoxy polymers. Springer Microsyst Technol 21:1941–1948.  https://doi.org/10.1007/s00542-014-2256-y CrossRefGoogle Scholar
  21. Gil I, Martin F, Rottenberg X, De Raedt W (2007) Tunable stop-band filter at Q-band based on RF-MEMS metamaterials. IET Electron Lett 43:1153.  https://doi.org/10.1049/el:20072164 CrossRefGoogle Scholar
  22. Goldsmith CL, Yao Z, Eshelman S, Denniston D (1998) Performance of low-loss RF MEMS capacitive switches. IEEE Microw Guid Wave Lett 8:269–271.  https://doi.org/10.1109/75.704410 CrossRefGoogle Scholar
  23. Gong S, Shen H, Barker NS (2011) A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches. IEEE Trans Microw Theory Tech 59:894–900.  https://doi.org/10.1109/tmtt.2011.2112374 CrossRefGoogle Scholar
  24. Guo X, Gong Z, Zhong Q, Liang X, Liu Z (2016) A miniaturized reconfigurable broadband attenuator based on RF MEMS switches. IOP J Micromech Microeng (JMM) 26:1–8.  https://doi.org/10.1088/0960-1317/26/7/074002 CrossRefGoogle Scholar
  25. Iannacci J (2013) Practical guide to RF MEMS. Wiley-VCH, Weinheim.  https://doi.org/10.1002/9783527680856 CrossRefGoogle Scholar
  26. Iannacci J (2015a) Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Elsevier Disp 37:62–71.  https://doi.org/10.1016/j.displa.2014.08.003 CrossRefGoogle Scholar
  27. Iannacci J (2015b) RF-MEMS: an enabling technology for modern wireless systems bearing a market potential still not fully displayed. Springer Microsyst Technol 21:2039–2052.  https://doi.org/10.1007/s00542-015-2665-6 CrossRefGoogle Scholar
  28. Iannacci J, Tian J, Sosin S, Gaddi R, Bartek M (2006) Hybrid wafer-level packaging for RF-MEMS applications. In: Proceedings of international wafer-level packaging conference (IWLPC), pp 106–113Google Scholar
  29. Iannacci J, Bartek M, Tian J, Gaddi R, Gnudi A (2008) Electromagnetic optimization of an RF-MEMS wafer-level package. Elsevier Sens Actuators A Phys 142:434–441.  https://doi.org/10.1016/j.sna.2007.08.018 CrossRefGoogle Scholar
  30. Iannacci J, Faes A, Mastri F, Masotti D, Rizzoli V (2010a) A MEMS-based wide-band multi-state power attenuator for radio frequency and microwave applications. In: Proceedings of NSTI Microtech, pp 328–331Google Scholar
  31. Iannacci J, Gaddi R, Gnudi A (2010b) Experimental validation of mixed electromechanical and electromagnetic modeling of RF-MEMS devices within a standard IC simulation environment. IEEE J Microelectromech Syst (JMEMS) 19:526–537.  https://doi.org/10.1109/jmems.2010.2048417 CrossRefGoogle Scholar
  32. Iannacci J, Repchankova A, Faes A, Tazzoli A, Meneghesso G, Dalla Betta G-F (2010c) Enhancement of RF-MEMS switch reliability through an active anti-stiction heat-based mechanism. Elsevier Microelectron Reliab 50:1599–1603.  https://doi.org/10.1016/j.microrel.2010.07.108 CrossRefGoogle Scholar
  33. Iannacci J, Masotti D, Kuenzig T, Niessner N (2011a) A reconfigurable impedance matching network entirely manufactured in RF-MEMS technology. In: Proceedings of SPIE smart sensors, actuators, and MEMS V, pp 1–12.  https://doi.org/10.1117/12.886186
  34. Iannacci J, Faes A, Kuenzig T, Niessner M, Wachutka G (2011b) Electromechanical and electromagnetic simulation of RF-MEMS complex networks based on compact modeling approach. In: Proceedings of NSTI Microtech, pp 591–594Google Scholar
  35. Iannacci J, Faes A, Repchankova A, Tazzoli A, Meneghesso G (2011c) An active heat-based restoring mechanism for improving the reliability of RF-MEMS switches. Elsevier Microelectron Reliab 51:1869–1873.  https://doi.org/10.1016/j.microrel.2011.06.019 CrossRefGoogle Scholar
  36. Iannacci J, Huhn M, Tschoban C, Pötter H (2016a) RF-MEMS technology for future mobile and high-frequency applications: reconfigurable 8-bit power attenuator tested up to 110 GHz. IEEE Electron Device Lett (EDL) 37:1646–1649.  https://doi.org/10.1109/led.2016.2623328 CrossRefGoogle Scholar
  37. Iannacci J, Huhn M, Tschoban C, Potter H (2016b) RF-MEMS technology for 5G: series and shunt attenuator modules demonstrated up to 110 GHz. IEEE Electron Device Lett (EDL) 37:1336–1339.  https://doi.org/10.1109/led.2016.2604426 CrossRefGoogle Scholar
  38. Iannacci J, Huhn M, Tschoban C, Potter H (2016d) RF-MEMS for 5G mobile communications: a basic attenuator module demonstrated up to 50 GHz. In: Proceedings of IEEE sensors, pp 1–3.  https://doi.org/10.1109/icsens.2016.7808547
  39. Jin Y, Wang Z, Chen J (2010) Introduction to microsystem packaging technology. CRC Press, Boca RatonGoogle Scholar
  40. Jourdain A, Ziad H, De Moor P, Tilmans HAC (2003) Wafer-scale 0-level packaging of (RF-)MEMS devices using BCB. In: Proceedings of symposium on design, test, integration and packaging of MEMS/MOEMS (DTIP), pp 239–244.  https://doi.org/10.1109/dtip.2003.1287044
  41. Katehi LPB, Rebeiz GM, Weller TM, Drayton RF, Cheng HJ, Whitaker JF (1993) Micromachined circuits for millimeter- and sub-millimeter-wave applications. IEEE Antennas Propag Mag 35:9–17.  https://doi.org/10.1109/74.242171 CrossRefGoogle Scholar
  42. Katehi LPB, Rebeiz GM, Nguyen CT-C (1998) MEMS and Si-micromachined components for low-power, high-frequency communications systems. In: Proceedings of IEEE MTT-S international microwave symposium, pp 331–333.  https://doi.org/10.1109/mwsym.1998.689386
  43. Kuang K, Kim F, Cahill SS (eds) (2010) RF and microwave microelectronics packaging. Springer, Berlin.  https://doi.org/10.1007/978-1-4419-0984-8 CrossRefGoogle Scholar
  44. Kuenzig T, Schrag G, Iannacci J (2012) Modeling and simulation of an active restoring mechanism for high reliability switches in RF-MEMS technology. Elsevier Microelectron Reliab 52:2235–2239.  https://doi.org/10.1016/j.microrel.2012.06.137 CrossRefGoogle Scholar
  45. Lahti M, Kautio K, Ollila J, Vähä-Heikkilä T, Kaunisto M (2013) Hermetic packaging for millimetre wave applications. In: Proceedings of European microelectronics packaging conference (EMPC), pp 1–5Google Scholar
  46. Lapedus M (2015) Inside the 5G smartphone. http://semiengineering.com/inside-the-5g-smartphone/. Accessed 21 March 2019
  47. Larcher L, Brama R, Ganzerli M, Iannacci J, Margesin B, Bedani M, Gnudi A (2009) A MEMS reconfigurable quad-band class-E power amplifier for GSM standard. In: Proceedings of IEEE 22nd international conference on micro electro mechanical systems (MEMS), pp 864–867.  https://doi.org/10.1109/memsys.2009.4805520
  48. Le LB, Lau V, Jorswieck E, Dao N-D, Haghighat A, Kim DI, Le-Ngoc T (2015) Enabling 5G mobile wireless technologies. EURASIP J Wirel Commun Netw.  https://doi.org/10.1186/s13638-015-0452-9 CrossRefGoogle Scholar
  49. Lisec T, Huth C, Wagner B (2004) Dielectric material impact on capacitive RF MEMS reliability. In: Proceedings of 34th European microwave conference (EuMC), pp 73–76Google Scholar
  50. Lu Y, Katehi LPB, Peroulis D (2005a) A novel MEMS impedance tuner simultaneously optimized for maximum impedance range and power handling. In: Proceedings of IEEE MTT-S international microwave symposium, pp 1–4.  https://doi.org/10.1109/mwsym.2005.1516775
  51. Lu ACW, Chua KM, Li HG (2005b) Emerging manufacturing technologies for RFIC, antenna and RF-MEMS integration. In: Proceedings of IEEE international workshop on radio-frequency integration technology: integrated circuits for wideband communication and wireless sensor networks, pp 142–146.  https://doi.org/10.1109/rfit.2005.1598895
  52. Mahameed R, Rebeiz GM (2010) A high-power temperature-stable electrostatic RF MEMS capacitive switch based on a thermal buckle-beam design. IEEE J Microelectromech Syst (IEEE-JMEMS) 19:816–826.  https://doi.org/10.1109/jmems.2010.2049475 CrossRefGoogle Scholar
  53. Malczewski A, Eshelman S, Pillans B, Ehmke J, Goldsmith CL (1999) X-band RF MEMS phase shifters for phased array applications. IEEE Microw Guid Wave Lett 9:517–519.  https://doi.org/10.1109/75.819417 CrossRefGoogle Scholar
  54. Margomenos A, Katehi LPB (2002) DC to 40 GHz on-wafer package for RF MEMS switches. In: Proceedings of IEEE topical meeting on electrical performance of electronic packaging, pp 91–94.  https://doi.org/10.1109/epep.2002.1057890
  55. Margomenos A, Katehi LPB (2003) High frequency parasitic effects for on-wafer packaging of RF MEMS switches. In: Proceedings of IEEE MTT-S international microwave symposium, pp 1931–1934.  https://doi.org/10.1109/mwsym.2003.1210536
  56. Martin MJC (1994) Managing innovation and entrepreneurship in technology-based firms. Wiley, HobokenGoogle Scholar
  57. Martinez J, Blondy A, Pothier A, Bouyge D, Crunteanu A, Chatras M (2007) Surface and bulk micromachined RF MEMS capacitive series switch for watt-range hot switching operation. In: Proceedings of 37th European microwave conference (EuMC), pp 1237–1240.  https://doi.org/10.1109/eumc.2007.4405424
  58. McGrath WR, Walker C, Yap M, Tai YC (1993) Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies. IEEE Microw Guid Wave Lett 3:61–63.  https://doi.org/10.1109/75.205665 CrossRefGoogle Scholar
  59. Melle S, Flourens F, Dubuc D, Grenier K, Pons P, Pressecq F, Kuchenbecker J, Muraro JL, Bary L, Plana R (2003) Reliability overview of RF MEMS devices and circuits. In: Proceedings of 33rd European microwave conference (EuMC), pp 37–40.  https://doi.org/10.1109/eumc.2003.1262212
  60. Moskvitch K (2015) Tactile internet: 5G and the Cloud on steroids. Eng Technol 10:48–53.  https://doi.org/10.1049/et.2015.0418 CrossRefGoogle Scholar
  61. Mulloni V, Giacomozzi F, Margesin B (2010) Controlling stress and stress gradient during the release process in gold suspended micro-structures. Elsevier Sens Actuators A Phys 162:93–99.  https://doi.org/10.1016/j.sna.2010.06.013 CrossRefGoogle Scholar
  62. Nguyen CT-C (1998) Microelectromechanical devices for wireless communications. In: Proceedings of IEEE 11th international conference on micro electro mechanical systems (MEMS), pp 1–7.  https://doi.org/10.1109/memsys.1998.659719
  63. Nguyen CT-C (2001) Transceiver front-end architectures using vibrating micromechanical signal processors. In: Proceedings of topical meeting on silicon monolithic integrated circuits in RF systems, pp 23–32.  https://doi.org/10.1109/smic.2001.942335
  64. Nguyen CT-C (2002) RF MEMS for wireless applications. In: Proceedings of device research conference (DRC), pp 9–12.  https://doi.org/10.1109/drc.2002.1029485
  65. Nguyen CT-C (2006) Integrated micromechanical circuits for RF front ends. In: Proceedings of European solid-state circuits conference (ESSCIRC), pp 7–16.  https://doi.org/10.1109/essder.2006.307630
  66. Nguyen CT-C (2007) MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control 54:251–270.  https://doi.org/10.1109/tuffc.2007.240 CrossRefGoogle Scholar
  67. Nguyen CT-C (2013) MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications. IEEE Commun Mag 51:110–119.  https://doi.org/10.1109/mcom.2013.6495769 CrossRefGoogle Scholar
  68. Niessner M, Schrag G, Wachutka G, Iannacci J, Reutter T, Mulatz H (2009) Non-linear model for the simulation of viscously damped RF-MEMS switches at varying ambient pressure conditions. Elsevier Procedia Chem 1:618–621.  https://doi.org/10.1016/j.proche.2009.07.154 CrossRefGoogle Scholar
  69. Niessner M, Schrag G, Iannacci J, Wachutka G (2011) Macromodel-based simulation and measurement of the dynamic pull-in of viscously damped RF-MEMS switches. Elsevier Sens Actuators A Phys 172:269–279.  https://doi.org/10.1016/j.sna.2011.04.046 CrossRefGoogle Scholar
  70. Nishino T, Kitsukawa Y, Hangai M, Lee S-S, Soda S-N, Miyazaki M, Naitoh I, Konishi Y (2009) Tunable MEMS hybrid coupler and L-band tunable filter. In: Proceedings of IEEE MTT-S international microwave symposium, pp 1045–1048.  https://doi.org/10.1109/mwsym.2009.5165879
  71. Ocera A, Farinelli P, Mezzanotte P, Sorrentino R, Margesin B, Giacomozzi F (2007) Novel RF-MEMS widely-reconfigurable directional coupler. In: Proceedings of 37th European microwave conference, pp 122–125.  https://doi.org/10.1109/eumc.2007.4405141
  72. Osseiran A, Boccardi F, Braun V, Kusume K, Marsch P, Maternia M, Queseth O, Schellmann M, Schotten H, Taoka H, Tullberg H, Uusitalo MA, Timus B, Fallgren M (2014) Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52:26–35.  https://doi.org/10.1109/mcom.2014.6815890 CrossRefGoogle Scholar
  73. Pacheco S, Zurcher P, Young S, Weston D, Dauksher W (2004) RF MEMS resonator for CMOS back-end-of-line integration. In: Proceedings of topical meeting on silicon monolithic integrated circuits in RF systems, pp 203–206.  https://doi.org/10.1109/smic.2004.1398203
  74. Park Y-K, Park H-W, Lee D-J, Park J-H, Song I-S, Kim C-W, Song C-M, Lee Y-H, Kim C-J, Ju BK (2002) A novel low-loss wafer-level packaging of the RF-MEMS devices. In: Proceedings of IEEE 15th international conference on micro electro mechanical systems (MEMS), pp 681–684.  https://doi.org/10.1109/memsys.2002.984362
  75. Park Y-K, Kim Y-K, Hoon K, Lee D-J, Kim C-J, Ju B-K, Park J-O (2003) A novel thin chip scale packaging of the RF-MEMS devices using ultra thin silicon. In: Proceedings of IEEE 16th international conference on micro electro mechanical systems (MEMS), pp 618–621.  https://doi.org/10.1109/memsys.2003.1189825
  76. Patel C, Rebeiz GM (2010) An RF-MEMS switch with mN contact forces. In: Proceedings of IEEE MTT-S international microwave symposium, pp 1242–1245.  https://doi.org/10.1109/mwsym.2010.5517237
  77. Reines I, Park S-J, Rebeiz GM (2010) Compact low-loss tunable X-band bandstop filter with miniature RF-MEMS switches. IEEE Trans Microw Theory Tech 58:1887–1895.  https://doi.org/10.1109/tmtt.2010.2050621 CrossRefGoogle Scholar
  78. Reinke J, Wang L, Fedder GK, Mukherjee T (2011) A 4-bit RF MEMS phase shifter monolithically integrated with conventional CMOS. In: Proceedings of IEEE 24th international conference on micro electro mechanical systems (MEMS), pp 748–751.  https://doi.org/10.1109/memsys.2011.5734533
  79. Rizk JB, Chaiban E, Rebeiz GM (2002) Steady state thermal analysis and high-power reliability considerations of RF MEMS capacitive switches. In: Proceedings of IEEE MTT-S international microwave symposium, pp 239–243.  https://doi.org/10.1109/mwsym.2002.1011602
  80. Shalaby M, Wang Z, Chow L-W, Jensen B, Volakis J, Kurabayashi K, Saitou K (2009) Robust design of RF-MEMS cantilever switches using contact physics modeling. IEEE Trans Ind Electron 56:1012–1021.  https://doi.org/10.1109/tie.2008.2006832 CrossRefGoogle Scholar
  81. Sordo G, Faes A, Resta G, Iannacci J (2013) Characterization of quartz-based package for RF MEMS. In: Proceedings of SPIE smart sensors, actuators, and MEMS VI, pp 1–9.  https://doi.org/10.1117/12.2017856
  82. Stehle A, Georgiev G, Ziegler V, Schoenlinner B, Prechtel U, Schmid U, Seidel H (2009) Broadband single-pole multithrow RF-MEMS switches for Ka-band. In: Proceedings of German microwave conference, pp 1–4.  https://doi.org/10.1109/gemic.2009.4815911
  83. Sun J, Zhu J, Jiang L, Yu Y, Li Z (2016) A broadband DC to 20 GHz 3-bit MEMS digital attenuator. J Micromech Microeng 26:1–6.  https://doi.org/10.1088/0960-1317/26/5/055005 CrossRefGoogle Scholar
  84. Tazzoli A, Autizi E, Barbato M, Meneghesso G, Solazzi F, Farinelli P, Giacomozzi F, Iannacci J, Margesin B, Sorrentino R (2009) Evolution of electrical parameters of dielectric-less ohmic RF-MEMS switches during continuous actuation stress. In: Proceedings of the European solid state device research conference (ESSDERC), pp 343–346.  https://doi.org/10.1109/essderc.2009.5331307
  85. Th Rijks GSM, van Beek JTM, Ulenaers MJE, De Coster J, Puers R, den Dekker A, van Teeffelen L (2003) Passive integration and RF MEMS: a toolkit for adaptive LC circuits. In: Proceedings of European solid-state circuits conference (ESSCIRC), pp 269–272.  https://doi.org/10.1109/esscirc.2003.1257124
  86. Thakur S, Sumithra Devi K, Ranjitha I (2009) Performance of low loss RF MEMS fixed-fixed capacitive switch characterization. In: Proceedings of applied electromagnetics conference (AEMC), pp 1–4.  https://doi.org/10.1109/aemc.2009.5430610
  87. Uckelmann D, Harrison M, Michahelles F (eds) (2011) Architecting the Internet of Things. Springer, Berlin 10.1007/978-3-642-19157-2 Google Scholar
  88. Uno Y, Narise K, Masuda T, Inoue K, Adachi Y, Hosoya K, Seki T, Sato F (2009) Development of SPDT-structured RF MEMS switch. In: Proceedings of international solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 541–544.  https://doi.org/10.1109/sensor.2009.5285381
  89. Van Caekenberghe K, Vaha-Heikkila T (2008) An Analog RF MEMS slotline true-time-delay phase shifter. IEEE Trans Microw Theory Tech 56:2151–2159.  https://doi.org/10.1109/tmtt.2008.2002236 CrossRefGoogle Scholar
  90. Varadan VK, Vinoy KJ, Jose KA (2002) RF MEMS and their applications. Wiley, Hoboken.  https://doi.org/10.1002/0470856602 CrossRefGoogle Scholar
  91. Vorobyov A, Sauleau R, Fourn E, Oberhammer J, Baghchehsaraei Z (2011) MEMS based waveguide phase shifters for phased arrays in automotive radar applications. In: Proceedings of European conference on antennas and propagation (EUCAP), pp 2087–2090Google Scholar
  92. Weller TM, Katehi LPB (1995) Compact stubs for micromachined coplanar waveguide. In: Proceedings of 25th European microwave conference (EuMC), pp 589–593.  https://doi.org/10.1109/euma.1995.337029
  93. Wu G, Talwar S, Johnsson K, Himayat N, Johnson KD (2011) M2M: from mobile to embedded internet. IEEE Commun Mag 49:36–43.  https://doi.org/10.1109/mcom.2011.5741144 CrossRefGoogle Scholar
  94. Zengerle R, Richter A, Sandmaier H (1992) A micro membrane pump with electrostatic actuation micro electro mechanical systems. In: Proceedings of IEEE international conference on micro electro mechanical systems (MEMS), pp 19–24.  https://doi.org/10.1109/memsys.1992.187684
  95. Zhang QX, Yu AB, Yang R, Li HY, Guo LH, Liao EB, Tang M, Kumar R, Liu AQ, Lo GQ, Balasubramanian N, Kwong DL (2006) Novel monolithic integration of RF-MEMS switch with CMOS-IC on organic substrate for compact RF system. In: Proceedings of international electron devices meeting (IEDM), pp 1–4.  https://doi.org/10.1109/iedm.2006.346890
  96. Ziegler V, Siegel C, Schonlinner B, Prechtel U, Schumacher H (2005) RF-MEMS switches based on a low-complexity technology and related aspects of MMIC integration. In: Proceedings of European gallium arsenide and other semiconductor application symposium (EGAAS), pp 289–292Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Materials and Microsystems (CMM)Fondazione Bruno Kessler (FBK)TrentoItaly

Personalised recommendations