Advertisement

A fully CMOS RF down-converter with 81.88 dB SFDR for IEEE 802.15.4 based wireless systems

  • S. Chrisben GladsonEmail author
  • K. Alekhya
  • M. Bhaskar
Technical Paper
  • 14 Downloads

Abstract

In this paper, the challenges of dense integration, low power, low-cost, low-noise and high spurious free dynamic range (SFDR) required by the RF front-end (RFE) circuits for low-rate wireless personal area networks are addressed. The proposed RF down-converter circuit utilizes a low-noise transconductance amplifier stage to improve the noise performance of the highly noisy switching stage of the down-converter. The nonlinearity of the low-noise stage is compensated by employing post-distortion based harmonic cancellation for dynamic range improvement of the RF front-end circuit. The proposed RFE is designed and realised in UMC 180 nm CMOS process technology. The post-layout characterization of the circuit shows an third-order intercept point with reference to the input (IIP3) of 11.83 dBm, double-sideband noise figure of 5.9 dB, conversion gain of 17.87 dB and offers a SFDR of 81.88 dB while consuming 5 mA current from 1.8 V. The proposed circuit consumes an area of 0.1 mm2. The proposed RF down-converter boasts a 17 dB improvement in SFDR over the recently proposed RFE in the literature. The proposed RFE is also correlated with the other existing state-of-art RFE circuits recorded in the literature for Zigbee applications.

Notes

Acknowledgements

This design project is supported by the Visvesvaraya Ph.D. scheme backed by the Ministry of Electronics and Information Technology (MeiTy), Govt. of India with Grant no. VISPHD-MEITY-1708.

References

  1. Abdelghany MA, Pokharel RK, Kanaya H, Yoshida K (2011) Low-voltage low-power combined LNA-single gate mixer for 5 GHz wireless systems. In: IEEE Radio frequency integrated circuits symposium. IEEE, Baltimore, MD, US.  https://doi.org/10.1109/RFIC.2011.5940698
  2. Abidi AA (1995) Direct-conversion radio transceivers for digital communications. IEEE J Solid State Circuits 30(12):1399–1410CrossRefGoogle Scholar
  3. Abidi AA (2003) General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback. IEEE Trans Microw Theory Tech 51(5):1610–1612CrossRefGoogle Scholar
  4. Aparin V, Larson LE (2005) Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Trans Microw Theory Tech 53(2):571–581CrossRefGoogle Scholar
  5. Aparin V, Brown G, Larson LE (2004) Linearization of CMOS LNAs via optimum gate biasing. Proc IEEE Circuits Syst Symp 4:748–751Google Scholar
  6. Baki RA, Tsang TKK, El-Gamal MN (2006) Distortion in RF CMOS short-channel low-noise amplifiers. IEEE Trans Microw Theory Tech 54(1):46–56CrossRefGoogle Scholar
  7. Banerjee H (1962) Analysis of sine-type non-linearity in control systems. Proc IEE Part B Electron Commun Eng 109(44):155–156CrossRefGoogle Scholar
  8. Barnes JA, Allan DW (1966) A statistical model of flicker noise. Proc IEEE 54(2):176–178CrossRefGoogle Scholar
  9. Bautista EE, Bastani B, Heck J (2000) A high IIP2 downconverting mixer using dynamic matching. IEEE J Solid State Circuits 35(12):1934–1941CrossRefGoogle Scholar
  10. Blaakmeer SC, Klumperink EAM, Leenaerts DMW, Nauta B (2000) Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid State Circuits 43(60):1341–1350Google Scholar
  11. Blaakmeer SC, Klumperink EAM, Leenaerts DMW, Nauta B (2008) Wideband balund-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid State Circuits 43(6):1341–1350CrossRefGoogle Scholar
  12. Bruccoleri F, Klumperink EAM, Nauta B (2004) Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J Solid State Circuits 39(2):275–282CrossRefGoogle Scholar
  13. Cao L, Liu R, Zhang Y, Zhang M, Li X, Wang W, Liu H, Lu C (2018) A 5.8 GHz digitally controlled CMOS receiver with a wide dynamic range for Chinese ETC system. IEEE Trans Circuits Syst II Express Briefs.  https://doi.org/10.1109/TCSII.2017.2777410 Google Scholar
  14. Chen W, Liu G, Zdarvko B, Niknejad AM (2008) A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J Solid State Circuits 43(5):1164–1176CrossRefGoogle Scholar
  15. Choi CH, Yu Z, Dutton RW (2003) Impact of poly-gate depletion on MOS RF linearity. IEEE Electron Device Lett 24(5):330–332CrossRefGoogle Scholar
  16. Choi C, Choi J, Nam I (2011) A low noise and highly linear 2.4 GHz RF front-end circuit for wireless sensor networks. In: 9th IEEE international conference on ASIC. IEEE, Xiamen, China. https://doi.org/10.1109/ASICON.2011.6157388
  17. Crolls J, Steyaert MSJ (1998) Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Trans Circuits Syst II Analog Digit Signal Process 45:269–282CrossRefGoogle Scholar
  18. Darabi H, Abidi AA (2000) Noise in RF-CMOS mixers: a simple physical model. IEEE Trans Solid State Circuits 35(1):15–25CrossRefGoogle Scholar
  19. Do AV, Boon CC, Do MA, Yeo KS, Cabuk A (2010) An energy-aware CMOS receiver front end for low-power 2.4 GHz applications. IEEE Trans Circuits Syst I Regul Pap 57(10):2675–2684MathSciNetCrossRefGoogle Scholar
  20. Fong KL, Meyer RG (1998) High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages. IEEE J Solid State Circuits 33(4):548–555CrossRefGoogle Scholar
  21. Friis HT (1944) Noise figures of radio receivers. Proc IRE 32(7):409–412CrossRefGoogle Scholar
  22. Geddada HM, Park JW, Silva-Martinez J (2009) Robust derivative superposition method for linearizing broadband LNAs. IEEE Electron Lett 45(9):435–436CrossRefGoogle Scholar
  23. Gladson SC, Bhaskar M (2017) A fully CMOS inductor-less folded cascode double-balanced mixer with high conversion gain for 2.4 GHz WPAN applications. In: International conference on recent innovations in electrical, electronics and communication systemsGoogle Scholar
  24. Gladson SC, Bhaskar M (2018) A low power high-performance area efficient RF front-end exploiting body effect for 2.4 GHz IEEE 802.15.4 applications. Int J Electron Commun 96:81–92CrossRefGoogle Scholar
  25. Himmelfarb M, Belostotski L (2016) Noise parameters of gilbert cell mixers. IEEE Trans Microw Theory Tech 64(10):3163–3174CrossRefGoogle Scholar
  26. Hull CD, Meyer RG (1993) A systematic approach to the analysis of noise in CMOS mixers. IEEE Trans Circuits Syst I Fundam Theory Appl 40(12):909–919CrossRefGoogle Scholar
  27. IEEE 802.15.4TM (2006) Wireless medium access control and physical layer specifications for low-rate wireless personal area networksGoogle Scholar
  28. Jafarnejad R, Jannesari A, Sobhi J (2017) Pre-distortion technique to improve linearity of low noise amplifier. Microelectron J 61:95–105CrossRefGoogle Scholar
  29. Jussila J, Sivonen P (2008) A 1.2-V highly linear balanced noise-cancelling LNA in 0.13- CMOS. IEEE J Solid State Circuits 43(3):579–587CrossRefGoogle Scholar
  30. Kang S, Choi B, Kim B (2003) Linearity analysis of CMOS for RF application. IEEE Trans Microw Theory Tech 51(3):972–977CrossRefGoogle Scholar
  31. Kar SK, Sen S (2013) Linearity improvement of source degenerated transconductance amplifers. Analog Integr Circuits Signal Process 74(2):399–407CrossRefGoogle Scholar
  32. Kim TW, Kim B (2006a) A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications. IEEE Trans Circuits Syst I Regul Pap 41(4):945–953Google Scholar
  33. Kim T-S, Kim B-S (2006b) Post-linearization of cascode CMOS LNA using folded PMOS IMD sinker. IEEE Microw Wirel Compon Lett 16(4):182–184CrossRefGoogle Scholar
  34. Kim N, Aparin V, Barnett K, Persico C (2006) A cellular-band CDMA 0.25 µm CMOS LNA linearized using active post-distortion. IEEE J Solid State Circuits 41(7):1530–1534CrossRefGoogle Scholar
  35. Kluge W, Poegel F, Roller H, Lange M, Ferchland T, Dathe L, Eggert D (2006) A fully integrated 2.4 GHz IEEE 802.15.4 compliant transceiver for ZigBee applications. IEEE ISSCC Digit Tech Pap 41:1470–1479Google Scholar
  36. Kwon I, Lee K (2007) An accurate behavioral model for RF MOSFET linearity analysis. IEEE Microw Wirel Compon Lett 17(12):897–899CrossRefGoogle Scholar
  37. Lee T-Y, Cheng Y (2004) High-frequency characterization and modeling of distortion behavior of MOSFETs for RF IC design. IEEE J Solid State Circuits 39(9):1407–1414CrossRefGoogle Scholar
  38. Leung B (2002) VLSI for wireless communications. Prentice Hall Electronics and VLSI SeriesGoogle Scholar
  39. Li H, Saavedra CE (2019) Linearization of active downconversion mixers at the IF using feedforward cancellation. IEEE Trans Circuits Syst I Regul Pap 66(4):1620–1631CrossRefGoogle Scholar
  40. Li Z, Cheng G, Wang Z (2018a) A 0.1–1 GHz low power RF receiver front-end with noise cancellation technique for WSN applications. AEU Int J Electron Commun 83:288–294CrossRefGoogle Scholar
  41. Li Z, Yao Y, Wang Z, Cheng G, Luo L (2018b) A 1 V 1.4 mW multi-band ZigBee receiver with 64 dB SFDR. Microelectron J 76:43–51CrossRefGoogle Scholar
  42. Liang Q, Andrews JM, Cressler JD, Niu G (2005) Systematic linearity analysis of RFICs using a two-port lumped-nonlinear-source model. IEEE Trans Microw Theory Tech 53(5):1745–1755CrossRefGoogle Scholar
  43. Manstretta D, Castello R, Svelto F (2001) Low 1/f noise CMOS active mixers for direct conversion. IEEE Trans Circuits Syst II Analog Digit Signal Process 48(9):846–850CrossRefGoogle Scholar
  44. Manstretta D, Brandolini M, Svelto F (2003) Second-order intermodulation mechanisms in CMOS downconverters. IEEE J Solid State Circuits 38(3):394–406CrossRefGoogle Scholar
  45. Martins MA, Oliviera LB, Fernandes JR (2009) Combined LNA and Mixer circuits for 2.4 GHz ISM band. In: IEEE international symposium on circuits and systems. IEEE, Taipei, Taiwan.  https://doi.org/10.1109/ISCAS.2009.5117776
  46. Meyer RG (1986) Intermodulation in higher-frequency bipolar transistor integrated-circuit mixers. IEEE J Solid State Circuits 21(4):534–537CrossRefGoogle Scholar
  47. Morici A, Rodriguez S, Rusu A, Ismail M, Turchetti C (2009) A 3.6 mW 90 nm CMOS 2.4 GHz receiver front-end design for IEEE 802.15.4 WSNs. In: International symposium on signals, circuits and systems. IEEE, Iasi, Romania.  https://doi.org/10.1109/ISSCS.2009.5206198
  48. Nedungadi A, Viswanathan TR (1984) Design of linear CMOS transconductance elements. IEEE Trans Circuits Syst 31(10):891–894CrossRefGoogle Scholar
  49. Oh NJ, Lee SG (2006) Building a 2.4-GHz radio transceiver using IEEE 802.15.4. IEEE Circ Dev Mag 21:43–51Google Scholar
  50. Razavi B (1997) Design considerations for direct conversion receivers. IEEE Trans Circuits Syst II Analog Digit Signal Process 44(6):428–435CrossRefGoogle Scholar
  51. Razavi B (2012) RF microelectronics. Pearson Education, LondonGoogle Scholar
  52. Roy AS, Kim S, Mudanai SP (2017) An improved flicker noise model for circuit simulations. IEEE Trans Electron Devices 64(4):1689–1694CrossRefGoogle Scholar
  53. Sansen W (1999) Distortion in elementary transistor circuits. IEEE Trans Circuits Syst II Analog Digit Signal Process 46(3):3115–3325CrossRefGoogle Scholar
  54. Seevinck E, Wassenaar RF, van den Berg MC (1986) Realization of linear high-frequency transconductance in CMOS-technology. In: ESSCIRC '86: twelfth European solid-state circuits conference. IEEE, Delft, The NetherlandsGoogle Scholar
  55. Solati P, Yavari M (2019) A wideband high linearity and low-noise CMOS active mixer using the derivative superposition and noise cancellation techniques. Circuits Syst Signal Process 1:1.  https://doi.org/10.1007/s00034-019-01023-2 Google Scholar
  56. Ström T, Signell S (1977) Analysis of periodically switched linear circuits. IEEE Trans Circuits Syst 24(10):531–541MathSciNetCrossRefzbMATHGoogle Scholar
  57. Tedja S, Van der Spiegel J, Williams HH (1994) Analytical and experimental studies of thermal noise in MOSFET’s. IEEE Trans Electron Devices 41(11):2069–2075CrossRefGoogle Scholar
  58. Terrovitis MT, Meyer RG (1999) Noise in current commutating CMOS mixers. IEEE J Solid State Circuits 34(6):772–783CrossRefGoogle Scholar
  59. Terrovitis MT, Meyer RG (2000) Intermodulation distortion in current-commutating CMOS mixers. IEEE J Solid State Circuits 35(10):1461–1473CrossRefGoogle Scholar
  60. Terrovitis MT, Kundert KS, Meyer RG (2002) Cyclostationary noise in radio-frequency communication systems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(11):1666–1671CrossRefGoogle Scholar
  61. Toole B, Plett C, Cloutier M (2004) RF circuit implications of moderate inversion enhanced linear region in MOSFETS. IEEE Trans Circuits Syst I Regul Pap 51(2):319–328CrossRefzbMATHGoogle Scholar
  62. Triantis DP, Birbas A, Kondis D (1996) Thermal noise modeling for short-channel MOSFET’s. IEEE Trans Electron Devices 43(11):1950–1955CrossRefGoogle Scholar
  63. van Langevelde R, Tiemeijier LF, Havens RJ, Knitel MJ, Mores RF, Woerlee P, Klaassen DBM (2000) RF-distortion in deep-submicron CMOS technologies. International electron devices meeting 2000. Technical digest. IEDM (Cat. No.00CH37138), pp 807–810. IEEE, San Francisco, CA, USA.  https://doi.org/10.1109/IEDM.2000.904440
  64. Vitee N, Ramiah H, Chong WK (2014) A wideband CMOS LNA-mixer for cognitive radio receiver. IEEE Asia Pacific conference on circuits and systems (APCCAS). IEEE, Ishigaki, Japan, pp 348–351.  https://doi.org/10.1109/APCCAS.2014.7032791 CrossRefGoogle Scholar
  65. Wan Q, Xu D, Zho H, Dong J (2018) A complementary current-mirror-based bulk-driven down-conversion mixer for wideband applications. Circuits Syst Signal Process 37(9):3671–3684CrossRefGoogle Scholar
  66. Wang B, Hellums JR, Sodini CG (1994) MOSFET thermal noise modeling for analog integrated circuits. IEEE J Solid State Circuits 29(7):833–835CrossRefGoogle Scholar
  67. Zhang H, Chen G, Yang X (2007) Fully differential CMOS LNA and down-conversion mixer for 3–5 GHz MB-OFDM UWB receivers. In: IEEE international workshop on radio-frequency integration technology. IEEE, Rasa Sentosa Resort, Singapore.  https://doi.org/10.1109/RFIT.2007.4443918
  68. Zhang H, Fan X, Sanchez-Sinencio E (2009) A low-power linearized ultra-wideband LNA design technique. IEEE J Solid State Circuits 44(2):320–330CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.RF CMOS IC Design Lab, Department of Electronics and Communication EngineeringNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Synopsys India, Private LimitedBangaloreIndia

Personalised recommendations