Microsystem Technologies

, Volume 25, Issue 12, pp 4439–4444 | Cite as

Synthesis of nanostructured based carbon nanowalls at low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD)

  • Rizwan ShoukatEmail author
  • Muhammad Imran Khan
Technical Paper


Synthesis of carbon nanowalls using inductively coupled plasma chemical vapor deposition is investigated in this article. This paper reports the growth of nanowalls at low temperature with effective results. Xylene was tested in combination with Ni film as catalyst to grow nanowalls. Various substrates, parameters and conditions were used for the growth purposes. Results obtained with xylene were promising for the growth of nanostructured based carbon nanowalls in the investigated parameter range. Results has been confirmed using scanning electron microscope, optical emission spectroscopy and Raman spectroscopy.



  1. Beumer K (2016) Broadening nanotechnology’s impact on development. Nat Nanotechnol 11:398–400CrossRefGoogle Scholar
  2. Chughtai MT, Alsaif H, Haleem MA, Alshammari AA, Khan MI, Usman M (2018) Holding arrangement for end polishing of single mode and other optical fibers. J Opt Technol 85(12):808–811CrossRefGoogle Scholar
  3. Dong H, Yang X, Chen H, Khan MI, Lin F (2018) A 0.3–3.5 GHz Active-feedback low-noise amplifier with linearization design for wideband receivers. AEU Int J Electron Commun (Elsevier) 84:192–198CrossRefGoogle Scholar
  4. Grzybowski BA, Huck WTS (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11:585–592CrossRefGoogle Scholar
  5. Hofmann S, Ducati C, Robertson J (2003) Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl Phys Lett 83:135CrossRefGoogle Scholar
  6. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRefGoogle Scholar
  7. Itoh T, Shimabukuro S, Kawamura S, Nonomura S (2006) Thin Solid Films 501:314CrossRefGoogle Scholar
  8. Kaul AB, Coles JB, Eastwood M, Green RO, Bandaru PR (2013) Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles. Small 9:1058–1065CrossRefGoogle Scholar
  9. Khan MI, Lin F (2014a) Impact of transistor model accuracy on the harmonic spectra emitted by logic circuits. In: 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT), ChinaGoogle Scholar
  10. Khan MI, Lin F (2014b) Comparative analysis and design of harmonic aware low power latches and flip-flops. In: IEEE 10th international conference on electron devices and solid-state circuits (EDSSC), Chengdu ChinaGoogle Scholar
  11. Khan MI, Khan AM, Nouman A, Azhar MI, Saleem MK (2012) pH Sensing materials for MEMS sensors and detection techniques. In: 2012 International conference on solid-state and integrated circuit (ICSIC 2012), Singapore, vol 32, pp 18–22Google Scholar
  12. Khan MI, Buzdar AR, Lin F (2014a) Self-heating and reliability issues in FinFET and 3D ICs. In: 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT), ChinaGoogle Scholar
  13. Khan MI, Buzdar AR, Lin F (2014b) Ballistic transport modeling in advanced transistors. In: 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT), Guilin, ChinaGoogle Scholar
  14. Khan MI, Shoukat R, Mukherjee K, Dong H (2017a) A review on pH sensitive materials for sensors and detection methods. Microsyst Technol 23(10):4391–4404. CrossRefGoogle Scholar
  15. Khan MI, Qamar A, Shabbir F, Shoukat R (2017b) Design, development and implementation of low power and high speed A/D converter in submicron CMOS technology. Microsyst Technol (Springer) 23(12):6005–6014CrossRefGoogle Scholar
  16. Khan MI, Shoukat R, Mukherjee K, Dong H (2018a) Analysis of harmonic contents of switching waveforms emitted by the ultra-high speed digital CMOS integrated circuits for use in future micro/nano systems applications. Microsyst Technol 24(2):1201–1206. CrossRefGoogle Scholar
  17. Khan MI, Dong H, Shabbir F, Shoukat R (2018b) Embedded passive components in advanced 3D chips and micro/nano electronic systems. J Microsyst Technol 24(2):869–877. CrossRefGoogle Scholar
  18. Kobayashi K, Tanimura M, Nakai H, Yoshimura A, Kojima K, Tachibana M (2007) Nanographite domains in carbon nanowalls. J Appl Phys 101:094306CrossRefGoogle Scholar
  19. Krivchenko VA, Dvorkin VV, Dzbanovsky NN, Timofeyev MA, Stepanov AS, Rakhimov AT, Suetin NV, Vilkov OYu, Yashina LV (2012) Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge. Carbon 50:1477–1487CrossRefGoogle Scholar
  20. Krivchenko VA, Evlashin SA, Mironovich KV, Verbitskiy NI, Nefedov A, Wöll C, Kozmenkova AY, Suetin NV, Svyakhovskiy SE, Vyalikh DV, Rakhimov AT, Egorov AV, Yashina LV (2013) Carbon nanowalls: the next step for physical manifestation of the black body coating. Sci Rep 3:1–6Google Scholar
  21. Li X, Cao A, Jung YJ, Vajtai R, Ajayan PM (2005) Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett 5:1997–2000CrossRefGoogle Scholar
  22. Liu X, Baronian KHR, Downard AJ (2009) Direct growth of vertically aligned carbon nanotubes on a planar carbon substrate by thermal chemical vapour deposition. Carbon 47:500–506CrossRefGoogle Scholar
  23. Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci 106:6044–6047CrossRefGoogle Scholar
  24. Mori S, Ueno T, Suzuki M (2011) Synthesis of carbon nanowalls by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system. Diam Relat Mater 20(8):1129–1132CrossRefGoogle Scholar
  25. Stohr U, Vulto P, Hoppe P, Urban GA, Reinecke H (2008) High-resolution permanent photoresist laminate for microsystem applications. J Micro/Nanolithography MEMS MOEMS 7(3):033009CrossRefGoogle Scholar
  26. Shoukat R, Khan MI (2017) Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsyst Technol 23(12):5447–5453. CrossRefGoogle Scholar
  27. Shoukat R, Khan MI (2018a) Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma enhanced chemical vapor deposition. Electr Eng (Springer) 100(2):997–1002CrossRefGoogle Scholar
  28. Shoukat R, Khan MI (2018b) Design and development of a clip building block system for MEMS”. Microsyst Technol (Springer) 24(2):1025–1031CrossRefGoogle Scholar
  29. Shoukat Rizwan, Khan MI (2018c) Nanotechnology based electrical control and navigation system for worm guidance using electric field gradient. Microsyst Technol (Springer) 24(2):989–993CrossRefGoogle Scholar
  30. Strata F (2008) Student assistant, LabView virtual surface for a plasma deposition equipment, University Freiburg, IMTEK-SensorenGoogle Scholar
  31. Tanaike O, Kitada N, Yoshimura H, Hatori H (2009) Lithium insertion behavior of carbon nanowalls by dc plasma CVD and its heat-treatment effect. Solid State Ionics 180:381CrossRefGoogle Scholar
  32. Tanaka K, Yoshimura M, Okamoto A, Ueda K (2005) Growth of carbon nanowalls on a SiO2 substrate by microwave plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 44A:2074CrossRefGoogle Scholar
  33. Wang H, Su Y, Chen S, Quan X (2013) Growth of tungsten oxide on carbon nanowalls templates. Mater Res Bull 48(13):1304–1307CrossRefGoogle Scholar
  34. Wei S, Kang WP, Davidson JL, Choi BK (2006) Vertically aligned carbon nanotube field emission devices fabricated by furnace thermal chemical vapor deposition at atmospheric pressure. J Vac Sci Technol B Microelectron Nanometer Struct 24:1190CrossRefGoogle Scholar
  35. Wu Y, Qiao P, Chong T, Shen Z (2002) Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv Mater 14:64CrossRefGoogle Scholar
  36. Wu Y, Yang B, Zong B, Sun H, Shen Z, Feng Y (2004) Carbon nanowalls and related materials. J Mater Chem 14:469CrossRefGoogle Scholar
  37. Wu S, Peng S, Wang CH (2018) Multifunctional polymer nanocomposites reinforced by aligned carbon nanomaterials. Polymers 10(5):542CrossRefGoogle Scholar
  38. Zhou M, Luo P, Li A, Wu Y, Khan MI, Lyu J, Li F, Li G (2018) Fabrication of silica membrane through surface‐induced condensation on porous block copolymer. Chem SELECT Commun 3(33):9694–9699Google Scholar
  39. Zitt U (2019) Zitt Thoma GmbH. ed. Haslacherstr.6, 79115 FreiburgGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microsystems Engineering, IMTEKUniversity of FreiburgFreiburgGermany
  2. 2.Department of Electrical EngineeringUniversity of HailHailSaudi Arabia
  3. 3.Micro/-Nano Electronic System Integration R&D Center (MESIC), University of Science and Technology of China (USTC)HefeiChina

Personalised recommendations