Advertisement

Structural design and simulation of a micro-gyroscope based on nano-grating detection

  • Mengwei LiEmail author
  • Zi Wang
  • Hao Geng
  • Qiannan Wu
  • Rui Zhang
  • Zhiqin Cui
  • Xiaoyan Wang
  • Gao Wang
Technical Paper
  • 28 Downloads

Abstract

The central concept underpinning the operation of the micro-gyroscope is the detection of the weak Coriolis force. We describe in detail the working principle of an optical micro-gyroscope based on nano-grating detection. A double-layer reflective metal nano-grating is used to detect the Coriolis force acting on the gyroscope. To analyze its structural sensitivity, a simulation model of the gyroscope is configured, results from which show that the structure achieves good modal matching and a structural sensitivity of 6.402 nm/°/s. Furthermore, the structure of the nano-grating is analyzed in an optical simulation, and a tolerance analysis is performed of several structural parameters to gain insight into realizing an actual device. Finally, a model of the gyroscope system was implemented in the SIMULINK environment. Using parameter values obtained from calculations, simulations of the nano-grating gyroscope gave a total sensitivity of 3.03 mv/°/s, along with a theoretical noise floor of 5.95 × 10−5°/s/√Hz. This confirms that the proposed optical micro-gyroscope performs well as designed.

Notes

Acknowledgements

National Natural Science Foundation of China (NSFC) (61573323, 61705200); National Key R&D Program of China (2017YFF0105200). The authors would like to thank the Suzhou Institute of Nano-Tech and Nano-Bionics for the guidance of model design. We thank Richard Haase, Ph.D, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

  1. Acar C, Shkel AM (2005) Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement. J Micromech Microeng 15(5):1092–1101CrossRefGoogle Scholar
  2. Alper SE, Azgin K, Akin T (2006) High-performance SOI-MEMS Gyroscope with decoupled oscillation modes. In: J IEEE International Conference on Micro Electro Mechanical Systems, pp 70–73Google Scholar
  3. Annovazzi-Lodi V, Merlo S, Norgia M, Spinola G, Vigna B, Zerbini S (2003) Optical detection of the coriolis force on a silicon micromachined gyroscope. J Microelectromech Syst 12(5):540–549CrossRefGoogle Scholar
  4. Ayanoor-Vitikkate V, Chen KL, Park WT, Kenny TW (2009) Development of wafer scale encapsulation process for large displacement piezoresistive MEMS devices. Sens Actuators A 156(2):275–283CrossRefGoogle Scholar
  5. Ayazi F, Najafi K (2001) A HARPSS polysilicon vibrating ring gyroscope. J Microelectrochem Syst 10(2):169–179CrossRefGoogle Scholar
  6. Carr DW, Sullivan JP, Friedmann TA (2003) Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis. Opt Lett 28(18):1636–1638CrossRefGoogle Scholar
  7. Chan HB, Marcet Z, Woo K, Tanner DB, Carr DW (2006) Optical transmission through double-layer metallic subwavelength slit arrays. Opt Lett 31(4):516–518CrossRefGoogle Scholar
  8. Guan Y, Gao S, Liu H, Jin L, Niu S (2016) Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16(4):468CrossRefGoogle Scholar
  9. Guo ZY, Lin LT, Zhao QC, Yang ZC, Xie H, Yan GZ (2010) A lateral-axis microelectromechanical tuning-fork gyroscope with decoupled comb drive operating at atmospheric pressure. J Microelectromech Syst 19(3):458–468CrossRefGoogle Scholar
  10. He Y, Wu X, Zheng F, Chen W, Zhang W, Cui F, Liu W (2014) Closed loop driving and detect circuit of piezoelectric solid-state micro gyroscope. Microsyst Technol 20(2):185–191CrossRefGoogle Scholar
  11. Hsu CC, Wu CC, Lee JY, Chen HY, Weng HF (2008) Reflection type heterodyne grating interferometry for in-plane displacement measurement. Opt Commun 281(9):2582–2589CrossRefGoogle Scholar
  12. Jiao X, Bai J, Lu Q, Lou S (2016) The modulation and demodulation module of a high resolution MOEMS accelerometer. J Phys 679(1):012016Google Scholar
  13. Kim JA, Kim KC, Bae EW, Kim S, Kwak YK (2000) Six-degree-of-freedom displacement measurement system using a diffraction grating. Rev Sci Instrum 71(8):3214–3219CrossRefGoogle Scholar
  14. Krishnamoorthy U, Carr DW, Bogart GR, Baker MS, and Olsson RH (2007) In-plane nano-g accelerometer based on an optical resonant detection system. In: Proceedings of IEEE conference on solid-state sensors, actuators & microsystems conference, Transducers International pp 1195–1198Google Scholar
  15. Li M, Deng T, Du K, Chu WH, Liu J (2016) Fabrication and characterization of a microaccelerometer based on resonant tunneling diodes. J Micro/Nanolithogr MEMS MOEMS 15(1):015001CrossRefGoogle Scholar
  16. Lu Q, Wang C, Bai J et al (2016) Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers. Opt Express 24(8):9094CrossRefGoogle Scholar
  17. Menon PK, Nayak J, Pratap R (2018) Sensitivity analysis of an in-plane MEMS vibratory gyroscope. Microsyst Technol 24(3):1–15Google Scholar
  18. Merdassi A, Kezzo MN (2017) Wafer-level vacuum-encapsulated rate gyroscope with hign quality factor in a commercial MEMS process. Microsyst Technol 23:3745–3756CrossRefGoogle Scholar
  19. Myung H, Lee HK, Choi K, Bang S (2010) Mobile robot localization with gyroscope and constrained Kalman filter. Int J Control Autom Syst 8(3):667–676CrossRefGoogle Scholar
  20. Ren MY, Zhang HF, Liu XW, Mao ZG (2014) High resolution capacitance detection circuit for rotor micro-gyroscope. AIP Adv 4(3):31Google Scholar
  21. Rombach S, Marx M, Nessler S, De Dorigo D, Maurer M, Manoli Y (2016) An interface asic for mems vibratory gyroscopes with a power of 1.6 mw, 92 db dr and 0.007°/s/√hz noise floor over a 40 hz band. IEEE J Solid-State Circuits 51(8):1–13CrossRefGoogle Scholar
  22. Sanathanan M, Maciej B, Shakil R, Liangxing H, Jianmin M (2017) Mems tunable diffraction grating for spaceborne imaging spectroscopic applications. Sensors 17(10):2372CrossRefGoogle Scholar
  23. Shcheglov K, Evans C, Gutierrez R, Tang TK (2000) Temperature dependent characteristics of the JPL silicon MEMS gyroscope. Aerosp Conf 1:403–411Google Scholar
  24. Sonmezoglu S, Alper SE, Akin T (2014) An automatically mode-matched mems gyroscope with wide and tunable bandwidth. J Microelectromech Syst 23(2):284–297CrossRefGoogle Scholar
  25. Sung W, Sung S, lee J, Kang T (2007) Design and performance test of a MEMS vibratory gyroscope with a novel AGC force rebalance control. J Micromech Microeng 17(10):1939–1948CrossRefGoogle Scholar
  26. Tatar E, Alper SE, Akin T (2012) Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. JMEMS 21(3):656–667Google Scholar
  27. Tatar E, Mukherjee T, Fedder GK (2014) Simulation of stress effects on mode-matched MEMS gyroscope bias and scale factor. In: Proceedings of IEEE conference on position, location & navigation symposium-plans pp 16–20Google Scholar
  28. Wang C, Yang G, Bai J et al (2015a) Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl Opt 54(13):4188–4196CrossRefGoogle Scholar
  29. Wang C, Lu Q, Bain J, Wang K (2015b) Tolerance analysis and optimization of a lateral deformable NEMS zeroth-order grating. Opt Commun 355:356–366CrossRefGoogle Scholar
  30. Wood RW (1935) Anomalous diffraction gratings. Phys Rev 48(12):928–936CrossRefGoogle Scholar
  31. Xia D, Yu C, Kong L (2014) “The development of micromachined gyroscope structure and circuitry technology. Sensors 14(1):1394–1473CrossRefGoogle Scholar
  32. Xia D, Hu Y, Kong L, Chang C (2015) Design of a digitalized microgyroscope system using $\Sigma \Delta $ modulation technology. IEEE Sens J 15(7):3793–3806CrossRefGoogle Scholar
  33. Yoon S, Park U, Rhim J, Yang SS (2015) Tactical grade MEMS vibrating ring gyroscope with high shock reliability. Microelectron Eng 142:22–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mengwei Li
    • 1
    • 2
    Email author
  • Zi Wang
    • 1
    • 2
  • Hao Geng
    • 1
    • 2
  • Qiannan Wu
    • 1
    • 2
  • Rui Zhang
    • 1
    • 3
  • Zhiqin Cui
    • 1
    • 2
  • Xiaoyan Wang
    • 1
    • 2
  • Gao Wang
    • 1
    • 2
  1. 1.Microsystem Integration CenterNorth University of ChinaTaiyuanChina
  2. 2.Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of EducationNorth University of ChinaTaiyuanChina
  3. 3.Engineering and Technology Research Center of Shanxi Provincial for Optical-Electric Information and InstrumentNorth University of ChinaTaiyuanChina

Personalised recommendations