A review of MEMS inertial switches

  • Yun CaoEmail author
  • Zhanwen Xi
Technical Paper


A microelectromechanical system (MEMS) inertial switch is both a sensor and an actuator by only capturing a threshold and a close/open timestamp, yielding unique benefits like lower power consumption, lower costs, small size and large volume production. A comprehensive survey of the design schemes, performance aspects and dynamic test methods of the MEMS inertial switches is provided. Different reported varieties and design schemes of the switch have been reviewed emphasizing on directional sensitivity, acceleration threshold sensitivity, mechanism of contact-enhancement, and their advantages and disadvantages. Further, the dynamic test methods to provide feedback to the design-and-simulation process, including electrical method and optical methods, have been compared and discussed. In the end, a main summary and outlook about the MEMS inertial switches has been provided to aid in the development of the future research in this field.



This work was supported in part by the National Natural Science Foundation of China (no. 51805268); China Postdoctoral Science Foundation (no. 2017M621745).


  1. Bao M, Yang H (2007) Squeeze film air damping in MEMS. Sens Actuators A Phys 136(1):3–27MathSciNetCrossRefGoogle Scholar
  2. Bosseboeuf A, Petitgrand S (2003) Characterization of the static and dynamic behaviour of M(O)EMS by optical techniques: status and trends. J Micromech Microeng 13(4):S23–S33CrossRefGoogle Scholar
  3. Brenner MP, Lang JH, Li J et al (2003) Optimal design of a bistable switch. Proc Natl Acad Sci 100(17):9663–9667MathSciNetCrossRefzbMATHGoogle Scholar
  4. Burdess JS, Harris AJ, Wood D et al (1997) A system for the dynamic characterization of microstructures. J Microelectromech Syst 6(4):322–328CrossRefGoogle Scholar
  5. Burns DJ, Helbig HF (1999) A system for automatic electrical and optical characterization of microelectromechanical devices. J Microelectromech Syst 8(4):473–482CrossRefGoogle Scholar
  6. Cai HG, Ding GF, Yang ZQ et al (2008a) Design, simulation and fabrication of a novel contact-enhanced MEMS inertial switch with a movable contact point. J Micromech Microeng 18:115033CrossRefGoogle Scholar
  7. Cai H, Yang Z, Ding G et al (2008b) Fabrication of a MEMS inertia switch on quartz substrate and evaluation of its threshold acceleration. Microelectron J 39(9):1112–1119CrossRefGoogle Scholar
  8. Cai H, Yang Z, Ding G et al (2009) Development of a novel MEMS inertial switch with a compliant stationary electrode. IEEE Sens J 9(7):801–808CrossRefGoogle Scholar
  9. Cao Y, Xi Z, Yu P et al (2015) A MEMS inertial switch with a single circular mass for universal sensitivity. J Micromech Microeng 25(10):105005CrossRefGoogle Scholar
  10. Cao Y, Xi Z, Yu P et al (2017) Optical measurement of the dynamic contact process of a MEMS inertial switch under high shock loads. IEEE Trans Ind Electron 64(1):701–709MathSciNetCrossRefGoogle Scholar
  11. Chen GY, Yang LM (2007) Fabrication of a high-g micro impact switch. Explos Shock Waves 27(2):190–192Google Scholar
  12. Chen GY, Wu JL, Zhao L et al (2009) Low-g micro inertial switch based on Archimedes’ spiral. Opt Precis Eng 17(6):1257–1261Google Scholar
  13. Chen W, Wang Y, Ding G et al (2014a) Simulation, fabrication and characterization of an all-metal contact-enhanced triaxial inertial microswitch with low axial disturbance. Sens Actuators A Phys 220:194–203CrossRefGoogle Scholar
  14. Chen W, Wang Y, Zhang Y et al (2014b) Fabrication of a novel contact-enhanced horizontal sensitive inertial micro-switch with electroplating nickel. Microelectron Eng 127:21–27CrossRefGoogle Scholar
  15. Chen W, Yang Z, Wang Y et al (2016) Fabrication and characterization of a low-g inertial microswitch with flexible contact point and limit-block constraints. IEEE/ASME Trans Mechatron 21(2):963–972CrossRefGoogle Scholar
  16. Choi J, Lee JI, Eun Y et al (2011) Aligned carbon nanotube arrays for degradation-resistant, intimate contact in micromechanical devices. Adv Mater 23(19):2231–2236CrossRefGoogle Scholar
  17. Chung CH, Ma RP, Shieh YC et al (2011) A robust micro mechanical-latch shock switch with low contact resistance. In: IEEE 16th international conference on solid-state sensors, actuators and microsystems, pp 1046–1051Google Scholar
  18. Churaman WA, Currano LJ, Gee D et al (2008) Three-axis MEMS threshold accelerometer switch for enhanced power conservation of MEMS sensors. Adv Sci Technol 54:384–389CrossRefGoogle Scholar
  19. Cook EH, Tomaino-Iannucci MJ, Reilly DP et al (2018) Low-power resonant acceleration switch for unattended sensor wake-up. J Microelectromech Syst 27(6):1071–1081CrossRefGoogle Scholar
  20. Currano LJ (2010a) Latching microelectromechanical shock sensor systems: design, modeling, and experiments. Dissertation, University of MarylandGoogle Scholar
  21. Currano LJ, Bauman S, Churaman W et al (2008) Latching ultra-low power MEMS shock sensors for acceleration monitoring. Sens Actuators A Phys 147(2):490–497CrossRefGoogle Scholar
  22. Currano LJ, Yu M, Balachandran B (2010) Latching in a MEMS shock sensor: modeling and experiments. Sens Actuators A Phys 159(1):41–50CrossRefGoogle Scholar
  23. Currano LJ, Becker CR, Smith GL et al (2012) 3-axis acceleration switch for traumatic brain injury early warning. In: IEEE 25th international conference on MEMS, pp 484–487Google Scholar
  24. Currano LJ, Becker CR, Lunking D et al (2013) Triaxial inertial switch with multiple thresholds and resistive ladder readout. Sens Actuators A Phys 195:191–197CrossRefGoogle Scholar
  25. Davis CQ, Freeman DM (1998a) Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching. Opt Eng 37(4):1290–1299CrossRefGoogle Scholar
  26. Davis CQ, Freeman DM (1998b) Using a light microscope to measure motions with nanometer accuracy. Opt Eng 37(4):1299–1305CrossRefGoogle Scholar
  27. Del Tin L, Iannacci J, Gaddi R et al (2007) Non linear compact modeling of RE-MEMS switches by means of model order reduction. In: Proceedings of IEEE TRANSDUCERS, pp 635–638Google Scholar
  28. Deng KF, Su WG, Li S et al (2013) A novel inertial switch based on nonlinear-spring shock stop. In: Proceedings of the IEEE transducer 2013 conference, pp 2381–2384Google Scholar
  29. Du L, Li Y, Zhao J et al (2018) A low-g MEMS inertial switch with a novel radial electrode for uniform omnidirectional sensitivity. Sens Actuators A Phys 270:214–222CrossRefGoogle Scholar
  30. Freudenreich M, Mescheder U, Somogyi G (2004) Simulation and realization of a novel micromechanical bi-stable switch. Sens Actuators A Phys 114(2):451–459CrossRefGoogle Scholar
  31. Frobenius WD, Zeitman SA, White MH et al (1972) Microminiature ganged threshold accelerometers compatible with integrated circuit technology. IEEE Trans Electron Devices 19(1):37–40CrossRefGoogle Scholar
  32. Gerson Y, Schreiber D, Grau H et al (2014) Meso scale MEMS inertial switch fabricated using an electroplated metal-on-insulator process. J Micromech Microeng 24(2):025008CrossRefGoogle Scholar
  33. Go JS, Cho YH, Kwak BM et al (1996) Snapping microswitches with adjustable acceleration threshold. Sens Actuators A Phys 54(1–3):579–583CrossRefGoogle Scholar
  34. Granaldi A, Decuzzi P (2006) The dynamic response of resistive microswitches: switching time and bouncing. J Micromech Microeng 16(7):1108CrossRefGoogle Scholar
  35. Greywall DS (2007) MEMS-based inertial switch. US: 7,218,193Google Scholar
  36. Guo ZY, Yang ZC, Lin LT et al (2009) A latching acceleration switch with cylindrical contacts independent to the proof-mass. In: Proceedings of the IEEE sensors, pp 1282–1285Google Scholar
  37. Guo ZY, Zhang XY, Zhao QC et al (2010) A high-G acceleration latching switch with integrated normally-open/close paths independent to the proof-mass. In: Sensors, pp 885–888Google Scholar
  38. Guo ZY, Yang ZC, Lin LT et al (2011) Design, fabrication and characterization of a latching acceleration switch with multi-contacts independent to the proof-mass. Sens Actuators A Phys 166(2):187–192CrossRefGoogle Scholar
  39. Hart MR, Conant RA, Lau KY et al (2000) Stroboscopic interferometer system for dynamic MEMS characterization. J Microelectromech Syst 9(4):409–418CrossRefGoogle Scholar
  40. Hwang J, Ryu D, Park C et al (2017) Design and fabrication of a silicon-based MEMS acceleration switch working lower than 10 g. J Micromech Microeng 27(6):065009CrossRefGoogle Scholar
  41. Iannacci J (2015) Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 37:62–71CrossRefGoogle Scholar
  42. Iannacci J, Repchankova A, Macii D et al (2009) A measurement procedure of technology-related model parameters for enhanced RF-MEMS design. In: Proceedings of IEEE AMUEM, pp 44–49Google Scholar
  43. Jean D (2004) Integrated MEMS mechanical shock sensor. In: NDIA 48th annual fuze conference, pp 26–28Google Scholar
  44. Jean DJ (2007) MEMS multi-directional shock sensor. US: 7,159,442Google Scholar
  45. Jean D, Smith G, Kunstmann J (2007) MEMS multi-directional shock sensor with multiple masses. US: 7,194,889Google Scholar
  46. Jia M, Li X, Song Z et al (2007) Micro-cantilever shocking-acceleration switches with threshold adjusting and ‘on’-state latching functions. J Micromech Microeng 17(3):567–575CrossRefGoogle Scholar
  47. Kim H, Jang YH, Kim YK et al (2014) MEMS acceleration switch with bi-directionally tunable threshold. Sens Actuators A Phys 208:120–129CrossRefGoogle Scholar
  48. Krehl P, Engemann S, Rembe C et al (1999) High-speed visualization, a powerful diagnostic tool for microactuators—retrospect and prospect. Microsyst Technol 5(3):113–132CrossRefGoogle Scholar
  49. Kuenzig T, Iannacci J, Schrag G et al (2012) Study of an active thermal recovery mechanism for an electrostatically actuated RF-MEMS switch. In: Proceedings of IEEE EuroSime, pp 1–7Google Scholar
  50. Kwa T (2014) Low-G MEMS acceleration switch. US: 8,779,534Google Scholar
  51. Lawrence EM, Rembe C (2003) MEMS characterization using new hybrid laser Doppler vibrometer/strobe video system. In: Proceedings of the SPIE reliability, testing, characterization. MEMS/MOEMS III, vol 5343, pp 45–55Google Scholar
  52. Lawrence EM, Speller K, Yu D (2002) Laser Doppler vibrometry for optical MEMS. In: Proceedings of the 5th international conference on vibration measurement on laser technology, vol 4827, pp 80–88Google Scholar
  53. Lawrence EM, Speller KE, Yu D (2003) MEMS characterization using laser Doppler vibrometry. In: Reliability, testing, and characterization of MEMS/MOEMS II, Proceedings of SPIE, vol 4980, pp 51–63Google Scholar
  54. Lee JI, Song Y, Jung HK et al (2011) Carbon nanotubes-integrated inertial switch for reliable detection of threshold acceleration. In: Proceedings of the international conference on solid-state sensors and actuators, pp 711–714Google Scholar
  55. Lee JI, Song Y, Jung H et al (2012) Deformable carbon nanotube-contact pads for inertial microswitch to extend contact time. IEEE Trans Ind Electron 59(12):4914–4920CrossRefGoogle Scholar
  56. Li XJ, Niu LJ, Zhai R et al (2013) MEMS omni-directional inertial switch with the slant of mass. J Detect Control 34(6):26–30Google Scholar
  57. Li J, Wang Y, Li Y et al (2018) A contact-enhanced MEMS inertial switch with electrostatic force assistance and multi-step pulling action for prolonging contact time. In: Microsystem Technologies, pp 1–13Google Scholar
  58. Lin HF, He HT, Bian YM et al (2009) Novel passive MEMS universal crash switch. MEMS Device Technol 46(6):358–361Google Scholar
  59. Lin L, Zhao Q, Yang Z et al (2014) Design and simulation of a 2-axis low g acceleration switch with multi-folded beams. In: IEEE international conference on solid-state and integrated circuit technology, pp 1–3Google Scholar
  60. Liu SJ, Hao YP (2013) Annular passive universal MEMS inertial switch. J Chin Inert Technol 21(2):240–244Google Scholar
  61. Liu SJ, Hao YP, Liu FL (2014) Design and fabrication of universal inertial switch based on MEMS technology. Key Eng Mater 609:689–695CrossRefGoogle Scholar
  62. Loke Y, McKinnon GH, Brett MJ (1991) Fabrication and characterization of silicon micromachined threshold accelerometers. Sens Actuators A Phys 29(3):235–240CrossRefGoogle Scholar
  63. Ma W, Zohar Y, Wong M (2003) Design and characterization of inertia-activated electrical micro-switches fabricated and packaged using low-temperature photoresist molded metal-electroplating technology. J Micromech Microeng 13(6):892CrossRefGoogle Scholar
  64. Ma CW, Huang PC, Kuo JC et al (2013) A novel inertial switch with an adjustable acceleration threshold using an MEMS digital-to-analog converter. Microelectron Eng 69(2):1–7Google Scholar
  65. Matsunaga T, Esashi M (2002) Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sens Actuators A Phys 100(1):10–17CrossRefGoogle Scholar
  66. Michaelis S, Timme HJ, Wycisk M et al (2000) Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications. J Micromech Microeng 10(2):120CrossRefGoogle Scholar
  67. Mu FQ (2006) Design and test of high-g MEMS acceleration switch used in fuze safety system. Dissertation, Nanjing University of Science and TechnologyGoogle Scholar
  68. Narasimhan V, Li H, Jianmin M (2015) Micromachined high-g accelerometers: a review. J Micromech Microeng 25(3):033001CrossRefGoogle Scholar
  69. Niessner M, Iannacci J, Peller A et al (2010) Macromodel-based simulation and measurement of the dynamic pull-in of viscously damped RF-MEMS switches. In: Proceedings of Eurosensors XXIV conference, pp 78–81Google Scholar
  70. Noetzel J, Tönnesen T, Benecke W et al (1996) Quasianalog accelerometer using microswitch array. Sens Actuators A Phys 54(1):574–578CrossRefGoogle Scholar
  71. Ongkodjojo A, Tay FEH (2006) Optimized design of a micromachined G-switch based on contactless configuration for health care applications. J Phys Conf Ser 34(1):1044CrossRefGoogle Scholar
  72. Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118CrossRefGoogle Scholar
  73. Rembe C, Muller RS (2002) Measurement system for full three-dimensional motion characterization of MEMS. J Microelectromech Syst 11(5):479–488CrossRefGoogle Scholar
  74. Rembe C, Aschemann H, aus der Wiesche S et al (2001a) Testing and improvement of micro-optical-switch dynamics. Microelectron Reliab 41(3):471–480CrossRefGoogle Scholar
  75. Rembe C, Muller L, Muller RS et al (2001b) Full three-dimensional motion characterization of a gimballed electrostatic microactuator. In: Proceedings of IEEE international reliability symposium, pp 91–98Google Scholar
  76. Rembe C, Kant R, Muller RS (2001c) Optical measurement methods to study dynamic behavior in MEMS. Proc SPIE 4000:127–137CrossRefGoogle Scholar
  77. Rembe C, Tibken B, Hofer EP (2001d) Analysis of the dynamics in microactuators using high-speed cine photomicrography. J Microelectromech Syst 10(1):137–145CrossRefGoogle Scholar
  78. Robinson CH (2004) Omnidirectional microscale impact switch. US: 6,765,160Google Scholar
  79. Selvakumar A, Yazdi N, Najafi K (2001) A wide-range micromachined threshold accelerometer array and interface circuit. J Micromech Microeng 11(2):118CrossRefGoogle Scholar
  80. Smith GL (2012) Triaxial MEMS acceleration switch. US: 8,237,521Google Scholar
  81. Speller K, Goldberg H, Gannon J et al (2002) Unique MEMS characterization solutions enabled by laser Doppler vibrometer measurements. Proc SPIE 4827:478–486CrossRefGoogle Scholar
  82. Tao YK, Liu YF, Dong JX (2014) Flexible stop and double-cascaded stop to improve shock reliability of MEMS accelerometer. Microelectron Reliab 54(6–7):1328–1337CrossRefGoogle Scholar
  83. Tønnesen T, Lüdtke O, Noetzel J et al (1997) Simulation, design and fabrication of electroplated acceleration switches. J Micromech Microeng 7(3):237–239CrossRefGoogle Scholar
  84. Van Spengen WM (2003) MEMS reliability from a failure mechanisms perspective. Microelectron Reliab 43(7):1049–1060CrossRefGoogle Scholar
  85. Wang Y, Feng Q, Wang Y et al (2013) The design, simulation and fabrication of a novel horizontal sensitive inertial micro-switch with low g value based on MEMS micromachining technology. J Micromech Microeng 23(10):105013CrossRefGoogle Scholar
  86. Wang Y, Yang Z, Xu Q et al (2015) Design, simulation and characterization of a MEMS inertia switch with flexible CNTs/Cu composite array layer between electrodes for prolonging contact time. J Micromech Microeng 25(8):085012CrossRefGoogle Scholar
  87. Whitley MR, Kranz MS, Kesmodel R et al (2005) Latching shock sensors for health monitoring and quality control. Prog Biomed Opt Imaging Proc SPIE 5717:185–195Google Scholar
  88. Wittwer JW, Baker MS, Epp DS et al (2008) MEMS passive latching mechanical shock sensor. In: Proceedings of the ASME, international design engineering technical conference and computers and information in engineering conference, pp 581–587Google Scholar
  89. Wu YB, Ding GF, Wang J et al (2010) Fabrication of low-stress low-stiffness leveraged cantilever beam for bistable mechanism. Microelectron Eng 87(11):2035–2041CrossRefGoogle Scholar
  90. Wycisk M, Tönnesen T, Binder J et al (2000) Low-cost post-CMOS integration of electroplated microstructures for inertial sensing. Sens Actuators A Phys 83(1–3):93–100CrossRefGoogle Scholar
  91. Xi Z, Zhang P, Nie W et al (2014) A novel MEMS omnidirectional inertial switch with flexible electrodes. Sens Actuators A Phys 212:93–101CrossRefGoogle Scholar
  92. Xie YJ (2006) Study on measurement methods and key technologies for dynamic characterization of MEMS microstructures. Dissertation, Huazhong University of Science and TechnologyGoogle Scholar
  93. Xu Q, Yang Z, Sun Y et al (2017) Shock-resistibility of mems-based inertial microswitch under reverse directional ultra-high g acceleration for IoT applications. Sci Rep 7:45512CrossRefGoogle Scholar
  94. Yang Z, Ding G, Chen W et al (2007) Design, simulation and characterization of an inertia micro-switch fabricated by non-silicon surface micromachining. J Micromech Microeng 17(8):1598CrossRefGoogle Scholar
  95. Yang Z, Ding G, Cai H et al (2008) A MEMS inertia switch with bridge-type elastic fixed electrode for long duration contact. IEEE Trans Electron Devices 55(9):2492–2497CrossRefGoogle Scholar
  96. Yang HL, Yang HW, Wang J (2009a) Design of high gn micro acceleration switch. Transducer Microsyst Technol 28(5):84–86Google Scholar
  97. Yang ZQ, Ding GF, Cai HG et al (2009b) Development of a shock acceleration microswitch with enhanced-contact and low off-axis sensitivity. In: Proceedings of the international conference on solid-state sensors, actuators, and microsystems conference transducer, pp 1940–1943Google Scholar
  98. Yang Z, Ding G, Cai H et al (2009c) Analysis and elimination of the ‘skip contact’phenomenon in an inertial micro-switch for prolonging its contact time. J Micromech Microeng 19(4):045017CrossRefGoogle Scholar
  99. Yang Z, Zhu B, Chen W et al (2012) Fabrication and characterization of a multidirectional-sensitive contact-enhanced inertial microswitch with a electrophoretic flexible composite fixed electrode. J Micromech Microeng 22(4):045006CrossRefGoogle Scholar
  100. Yang Z, Ding G, Wang Y et al (2018) A MEMS inertial switch based on nonsilicon surface micromachining technology. In: Huang QA (ed) Micro electro mechanical systems, Micro/nano technologies, vol 2. Springer, Singapore, pp 945–995CrossRefGoogle Scholar
  101. Yoo K, Kim J (2009) A novel configurable MEMS inertial switch using microscale liquid-metal droplet. In: IEEE international conference on MEMS’09, pp 793–796Google Scholar
  102. Yoo K, Park U, Kim J (2011) Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel. Sens Actuators A Phys 166(2):234–240CrossRefGoogle Scholar
  103. Zhang ZM, Wang XS, Yang LM (2002) Impact switch for low acceleration. J Transducer Technol 21(7):28–30Google Scholar
  104. Zhang Q, Yang Z, Xu Q et al (2016) Design and fabrication of a laterally-driven inertial micro-switch with multi-directional constraint structures for lowering off-axis sensitivity. J Micromech Microeng 26(5):055008CrossRefGoogle Scholar
  105. Zhang F, Wang C, Yuan M et al (2017a) Conception, fabrication and characterization of a silicon based MEMS inertial switch with a threshold value of 5 g. J Micromech Microeng 27(12):125001CrossRefGoogle Scholar
  106. Zhang F, Yuan M, Jin W et al (2017b) Fabrication of a silicon based vertical sensitive low-g inertial micro-switch for linear acceleration sensing. Microsyst Technol 23(7):2467–2473CrossRefGoogle Scholar
  107. Zhao J, Jia J, Wang H et al (2007) A novel threshold accelerometer with postbuckling structures for airbag restraint systems. IEEE Sens J 7(8):1102–1109CrossRefGoogle Scholar
  108. Zhao J, Yang Y, Fan K et al (2010) A bistable threshold accelerometer with fully compliant clamped-clamped mechanism. IEEE Sens J 10(5):1019–1024CrossRefGoogle Scholar
  109. Zhong Y, Zhang G, Leng C, Zhang T (2007) A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS. Measurement 40(6):623–627CrossRefGoogle Scholar
  110. Zhou Z, Nie W, Xi Z et al (2016) A high-electrical-reliability MEMS inertial switch based on latching mechanism and debounce circuit. IEEE Sens J 16(7):1918–1925CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Mechanical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations