Advertisement

Power-aware VLSI design of reversible watermarking for access control

  • Goutam Kumar MaityEmail author
  • Poulami Jana
  • Himadri Mandal
  • Tien-Lung Chiu
Technical Paper

Abstract

A lifting based reversible data hiding is introduced here. The low–high subband is subdivided into little blocks of size (4 × 4), to generate a content dependent watermark. Then the access management is done by permutation of the content dependent watermark by a user-specific covert key. The permuted watermark is employed to modulate the lifting coefficients of the low–high subband. The modulation causes degradation of the visual quality of the host image. That plays an important role in access management through inverse method. Lastly, a low-power ‘very-large-scale-integration’ architectural hardware of this scheme is designed and synthesized on a ‘field programmable gate array’. The experiment is conducted over a variety of benchmark images and the results establish the superiority of the method. It is also observed that in real-time processing, the scheme consumes 63.26% less power than the related implementation found in the literature, for watermarking encoder and decoder at a maximum operating frequency of 130.186 MHz for the processing of (512 × 512) sized images.

Notes

Acknowledgments

This study was supported by the Ministry of Science and Technology (MOST), Taiwan ROC, under Grant Numbers MOST 107-3113-E-155-001-CC2, 106-3113-E-155-001-CC2, 106-2221-E-155-036, 105-3113-E-155-001, 104-3113-E-155-001, 103-3113-E-155-001, 103-2221-E-155-028-MY3.

References

  1. Belhadj H, Aggrawal V, Pradhan A, Zerrouki A (2009) Power-aware FPGA design. Actel Corporation White Paper 1:75Google Scholar
  2. Buch KD (2018) Low power architecture and HDL coding practices for on-board hardware applications. https://nepp.nasa.gov/mapld_2009/talks/…/Buch_Kaushal%20D._mapld09_pres_2.ppt. Accessed 09 Mar 2018
  3. Darji AD, Lad TC, Merchant SN, Chandorkar AN (2013) Watermarking hardware based on wavelet coefficients quantization method. Circuits Syst Signal Process 32:2559–2579.  https://doi.org/10.1007/s00034-013-9550-2 MathSciNetCrossRefGoogle Scholar
  4. Das S, Maity R, Maity NP (2018) VLSI-based pipeline architecture for reversible image watermarking by difference expansion with high-level synthesis approach. Circuits Syst Sign Process 37:1575–1593.  https://doi.org/10.1007/s00034-017-0609-3 MathSciNetCrossRefGoogle Scholar
  5. Divecha NH, Jani NN (2015) Reversible watermarking technique for medical images using fixed point pixel. In: Fifth international conference on communication systems and network technologies. 1:725-730  https://doi.org/10.1109/csnt.2015.287
  6. Garrault P, Philofsky B (2006) HDL coding practices to accelerate design performance. Xilinx White Paper 1:1–22Google Scholar
  7. Ghosh S, Talapatra S, Sharma J, Chatterjee N, Rahaman H, Maity SP (2012) Dual mode VLSI architecture for spread spectrum image watermarking using binary watermark. Procedia Technol 6:784–791.  https://doi.org/10.1016/j.protcy.2012.10.095 CrossRefGoogle Scholar
  8. Hazra S, Ghosh S, De S, Rahaman H (2018) FPGA implementation of semi-fragile reversible watermarking by histogram bin shifting in real time. J Real Time Image Proc 14:193–221.  https://doi.org/10.1007/s11554-017-0672-9 CrossRefGoogle Scholar
  9. Kaddachi ML, Soudani A, Lecuire V, Torki K, Makkaoui L, Moureaux JM (2012) Low power hardware-based image compression solution for wireless camera sensor networks. Comput Stand Interfaces 34:14–23.  https://doi.org/10.1016/j.csi.2011.04.001 CrossRefGoogle Scholar
  10. Khan A, Malik SA (2014) A high capacity reversible watermarking approach for authenticating images: exploiting down-sampling, histogram processing, and block selection. Inf Sci 256:162–183.  https://doi.org/10.1016/j.ins.2013.07.035 CrossRefGoogle Scholar
  11. Kim C, Shin D, Leng L, Yang CN (2018) Lossless data hiding for absolute moment block truncation coding using histogram modification. J Real Time Image Proc 14:101–114.  https://doi.org/10.14257/ijsia.2014.8.2.31 CrossRefGoogle Scholar
  12. Lo CC, Hu YC, Chen WL, Wu CM (2014) Reversible data hiding scheme for BTC-compressed images based on histogram shifting. Int J Secur Appl 8:301–314.  https://doi.org/10.14257/ijsia.2014.8.2.31 Google Scholar
  13. Maes M, Kalker T, Linnartz JP, Talstra J, Depovere FG, Haitsma J (2000) Digital watermarking for DVD video copy protection. IEEE Signal Process Mag 17:47–57.  https://doi.org/10.1109/79.879338 CrossRefGoogle Scholar
  14. Maity SP, Kundu MK (2013) Distortion free image-in-image communication with implementation in FPGA. AEU Int J Elec Commun 67:438–447.  https://doi.org/10.1016/j.aeue.2012.10.2014 CrossRefGoogle Scholar
  15. Maity HK, Maity SP (2014) FPGA implementation of reversible watermarking in digital images using reversible contrast mapping. J Syst Softw 96:93–104.  https://doi.org/10.1016/j.jss.2014.05.079 CrossRefGoogle Scholar
  16. Maity SP, Kundu MK, Maity S (2009) Dual purpose FWT domain spread spectrum image watermarking in real time. Comput Electr Eng 35:415–433.  https://doi.org/10.1016/j.compeleceng.2008.06.003 CrossRefzbMATHGoogle Scholar
  17. Mandal H, Maity GK, Phadikar A, Chiu TL (2017) FPGA based low power hardware implementation for quality access control of a compressed grayscale image. In: Proceedings of first international conference on computational intelligence, communications, and business analytics (CICBA), vol. 1. pp 416–430.  https://doi.org/10.1007/978-981-10-6427-2_34
  18. Mohanty SP, Ranganathan N, Balakrishnan K (2006) A dual voltage frequency VLSI chip for image watermarking in DCT domain. IEEE Trans Circuits Syst II Express Briefs 53:394–398.  https://doi.org/10.1109/TCSII.2006.870216 CrossRefGoogle Scholar
  19. Nagabushanam M, Ramachandran S (2012) Fast implementation of lifting based 1D/2D/3D DWT-IDWT architecture for image compression. Int J Comput Appl 51:35–41Google Scholar
  20. Phadikar A, Maity SP, Kundu MK (2008) Quantization based data hiding scheme for efficient quality access control of images using DWT via lifting. Comput Vis Graph Image Process 1:265–272.  https://doi.org/10.1109/ICVGIP.2008.23 Google Scholar
  21. Phadikar A, Mandal H, Maity GK, Chiu TL (2015) A new model of QIM data hiding for quality access control of digital image. Soft Comput Netw Secur (ICSNS) 1:1–5.  https://doi.org/10.1109/ICSNS.2015.7292441 Google Scholar
  22. Phadikar A, Maity GK, Chiu TL, Mandal H (2018) FPGA implementation of lifting-based data hiding scheme for efficient quality access control of images. Circuits Syst Sign Process 1:1–27.  https://doi.org/10.1007/s00034-018-0893-6 Google Scholar
  23. Priya RL, Belji T, Sadasivam V (2014) Security of health imagery via reversible watermarking based on differential evolution. In: Medical imaging, m-health and emerging communication systems (MedCom), vol. 1. pp 30–34.  https://doi.org/10.1109/medcom.2014.7005570
  24. Shete KS, Patil M, Chitode JS (2016) Least significant bit and discrete wavelet transform algorithm realization for image steganography employing FPGA. Int J Image Graph Sign Process 8:48.  https://doi.org/10.5815/ijigsp.2016.06.06 CrossRefGoogle Scholar
  25. Sun W, Lu ZM, Wen YC, Yu FX, Shen RJ (2013) High performance reversible data hiding for block truncation coding compressed images. SIViP 7:297–306.  https://doi.org/10.1007/s11760-011-0238-4 CrossRefGoogle Scholar
  26. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error measurement to structural similarity. IEEE Trans Image Process. 13:600–612.  https://doi.org/10.1109/tip.2003.819861 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Goutam Kumar Maity
    • 1
    Email author
  • Poulami Jana
    • 2
  • Himadri Mandal
    • 3
  • Tien-Lung Chiu
    • 3
  1. 1.Pingla Thana MahavidyalayaMaligramIndia
  2. 2.Maulana Abul Kalam Azad University of TechnologyKolkataIndia
  3. 3.Yuan Ze UniversityTaoyuanTaiwan

Personalised recommendations