Advertisement

A new model for permanent flexural deflection of cantilever MEMS actuator by conventional mechanism-based strain gradient plasticity framework

  • Amer Darvishvand
  • Asghar ZajkaniEmail author
Technical Paper
  • 9 Downloads

Abstract

In two past decades, there are so many works representing to elastic behaviors of cantilever MEMS actuators in the micro and nanoscales for various loading conditions and geometries. However, there are little efforts available for the permanent plastic behavior of the MEMS structures and actuators. In addition, the most size—dependent plasticity considerations based on gradient models have been limited to primary concepts on material modeling or microstructural evolution as compared with structural analyses. In this paper, a conventional mechanism-based strain gradient (CMSG) plasticity theory is applied to investigate permanent behavior of the cantilever micro-beam actuators, by determining the effect of length scale on flexural displacement. If the beam is scaled to micron size, mechanical behavior follows from material dimension or length scale. While the model consisted of a multiple plastic work hardening, its kinematics is established on the Euler–Bernoulli hypothesis. The deflection of cantilever MEMS actuator is determined for different cases of the loading and length scales, compared with other relevant theoretical and experimental observations. Also, the effect of the elastic medium of the environmental foundation is considered for the actuator, dedicatedly.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acharya A, Beaudoin AJ (2000) Grain-size effect in viscoplastic polycrystals at moderate strains. J Mech Phys Solids 48:2213–2230.  https://doi.org/10.1016/S0022-5096(00)00013-2 CrossRefzbMATHGoogle Scholar
  2. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106:326.  https://doi.org/10.1115/1.3225725 CrossRefGoogle Scholar
  3. Aifantis EC (1987) The physics of plastic deformation. Int J Plast 3:211–247.  https://doi.org/10.1016/0749-6419(87)90021-0 CrossRefzbMATHGoogle Scholar
  4. Arsenlis A, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47:1597–1611.  https://doi.org/10.1016/S1359-6454(99)00020-8 CrossRefGoogle Scholar
  5. Azizi R, Niordson CF, Legarth BN (2014) On the homogenization of metal matrix composites using strain gradient plasticity. Acta Mech Sin 30:175–190.  https://doi.org/10.1007/s10409-014-0028-7 MathSciNetCrossRefzbMATHGoogle Scholar
  6. Ban H, Yao Y, Chen S, Fang D (2017) The coupling effect of size and damage in micro-scale metallic materials. Int J Plast 95:251–263.  https://doi.org/10.1016/j.ijplas.2017.04.012 CrossRefGoogle Scholar
  7. Ban H, Yao Y, Chen S, Fang D (2019) A new constitutive model of micro-particle reinforced metal matrix composites with damage effects. Int J Mech Sci 1:2.  https://doi.org/10.1016/j.ijmecsci.2019.01.024 Google Scholar
  8. Bassani JL (2001) Incompatibility and a simple gradient theory of plasticity. J Mech Phys Solids 49:1983–1996CrossRefzbMATHGoogle Scholar
  9. Bishop JFW, Hill R (1951a) CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal. Lond Edinb Dublin Philos Mag J Sci 42:1298–1307.  https://doi.org/10.1080/14786444108561385 CrossRefzbMATHGoogle Scholar
  10. Bishop JFW, Hill R (1951b) A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philos Mag Ser 7(42):414–427.  https://doi.org/10.1080/14786445108561065 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Cermelli P, Gurtin ME (2002) Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int J Solids Struct 39:6281–6309.  https://doi.org/10.1016/S0020-7683(02)00491-2 CrossRefzbMATHGoogle Scholar
  12. Challamel N, Wang CM (2008) The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19:1–7.  https://doi.org/10.1088/0957-4484/19/34/345703 CrossRefGoogle Scholar
  13. Chen SH, Feng B (2011) Size effect in micro-scale cantilever beam bending. Acta Mech 219:291–307.  https://doi.org/10.1007/s00707-011-0461-7 CrossRefzbMATHGoogle Scholar
  14. Chen SH, Wang TC (2000) New hardening law for strain gradient plasticity. Acta Mater 48:3997–4005.  https://doi.org/10.1016/S1359-6454(00)00216-0 CrossRefGoogle Scholar
  15. Chen SH, Wang TC (2002a) Finite element solutions for plane strain mode I crack with strain gradient effects. Int J Solids Struct 39:1241–1257.  https://doi.org/10.1016/S0020-7683(01)00233-5 CrossRefzbMATHGoogle Scholar
  16. Chen SH, Wang TC (2002b) Size effects in the particle-reinforced metal-matrix composites. Acta Mech 157:113–127.  https://doi.org/10.1007/BF01182158 CrossRefzbMATHGoogle Scholar
  17. Chen SH, Wang TC (2002c) A new deformation theory with strain gradient effects. Int J Plast 18:971–995.  https://doi.org/10.1016/S0749-6419(01)00020-1 CrossRefzbMATHGoogle Scholar
  18. Chen SH, Tao CJ, Wang TC (2004) A study of size-dependent microindentation. Acta Mech 167:57–71.  https://doi.org/10.1007/s00707-003-0064-z CrossRefzbMATHGoogle Scholar
  19. Chen S, Liu L, Wang T (2005) Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating-substrate combinations. Surf Coatings Technol 191:25–32.  https://doi.org/10.1016/j.surfcoat.2004.03.037 CrossRefGoogle Scholar
  20. Chen SH, Liu L, Wang TC (2007) Small scale, grain size and substrate effects in nano-indentation experiment of film-substrate systems. Int J Solids Struct 44:4492–4504.  https://doi.org/10.1016/j.ijsolstr.2006.11.033 CrossRefGoogle Scholar
  21. Chen S, Feng B, Wei Y, Wang T (2011) Prediction of the initial thickness of shear band localization based on a reduced strain gradient theory. Int J Solids Struct 48:3099–3111.  https://doi.org/10.1016/j.ijsolstr.2011.07.007 CrossRefGoogle Scholar
  22. Demiral M, Roy A, Silberschmidt VV (2016) Strain-gradient crystal-plasticity modelling of micro-cutting of b.c.c. single crystal. Meccanica 51:371–381.  https://doi.org/10.1007/s11012-015-0280-3 CrossRefGoogle Scholar
  23. Elmustafa AA, Stone DS (2002) Indentation size effect in polycrystalline. F C C Metals 50:3641–3650Google Scholar
  24. Ertürk I, van Dommelen JAW, Geers MGD (2014) Gradient crystal plasticity modelling of anelastic effects in particle strengthened metallic thin films. Meccanica 49:2657–2685.  https://doi.org/10.1007/s11012-014-9907-z MathSciNetCrossRefzbMATHGoogle Scholar
  25. Evers L, Brekelmans WA, Geers MG (2004) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids Struct 41:5209–5230.  https://doi.org/10.1016/j.ijsolstr.2004.04.021 CrossRefzbMATHGoogle Scholar
  26. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41:1825–1857.  https://doi.org/10.1016/0022-5096(93)90072-N MathSciNetCrossRefzbMATHGoogle Scholar
  27. Fleck NA, Hutchinson Jv (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361CrossRefzbMATHGoogle Scholar
  28. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271.  https://doi.org/10.1016/S0022-5096(01)00049-7 CrossRefzbMATHGoogle Scholar
  29. Fleck NA, Willis JR (2009) A mathematical basis for strain-gradient plasticity theory. Part II: tensorial plastic multiplier. J Mech Phys Solids 57:1045–1057.  https://doi.org/10.1016/j.jmps.2009.03.007 MathSciNetCrossRefzbMATHGoogle Scholar
  30. Fleck NA, Willis JR (2015) Strain gradient plasticity: energetic or dissipative? Acta Mech Sin Xuebao 31:465–472.  https://doi.org/10.1007/s10409-015-0468-8 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Fleck Na, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487.  https://doi.org/10.1016/0956-7151(94)90502-9 CrossRefGoogle Scholar
  32. Gao H, Huang Y, Nix WD (1999a) Modeling plasticity at the micrometer scale. Naturwissenschaften 86:507–515.  https://doi.org/10.1007/s001140050665 CrossRefGoogle Scholar
  33. Gao H, Huang Y, Nix WD, Hutchinson JW (1999b) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47:1239–1263.  https://doi.org/10.1016/S0022-5096(98)00103-3 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Geers MGD, Brekelmans WAM, Bayley CJ (2007) Second-order crystal plasticity: Internal stress effects and cyclic loading. Model Simul Mater Sci Eng.  https://doi.org/10.1088/0965-0393/15/1/s12 Google Scholar
  35. Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52:1379–1406.  https://doi.org/10.1016/j.jmps.2003.11.002 MathSciNetCrossRefzbMATHGoogle Scholar
  36. Gurtin ME (2000) On the plasticity of single crystals : free energy, microforces, plastic-strain gradients. J Mech Phys Solids 48:989–1036MathSciNetCrossRefzbMATHGoogle Scholar
  37. Gurtin ME, Anand L (2005) A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformations. Int J Plast 21:2297–2318.  https://doi.org/10.1016/j.ijplas.2005.01.006 CrossRefzbMATHGoogle Scholar
  38. Huang Y, Gao H, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient plasticity—II. Analysis. J Mech Phys Solids 48:99–128.  https://doi.org/10.1016/S0022-5096(99)00022-8 MathSciNetCrossRefzbMATHGoogle Scholar
  39. Huang Y, Qu S, Hwang KC et al (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20:753–782.  https://doi.org/10.1016/j.ijplas.2003.08.002 CrossRefzbMATHGoogle Scholar
  40. Huber N, Nix WD, Gao H (2002) Identification of elastic-plastic material parameters from pyramidal indentation of thin films. Proc R Soc A Math Phys Eng Sci 458:1593–1620.  https://doi.org/10.1098/rspa.2001.0927 CrossRefzbMATHGoogle Scholar
  41. Hutchinson JW (2012) Generalizing J2 flow theory: fundamental issues in strain gradient plasticity. Acta Mech Sin Xuebao 28:1078–1086.  https://doi.org/10.1007/s10409-012-0089-4 CrossRefzbMATHGoogle Scholar
  42. Idiart MI, Deshpande VS, Fleck NA, Willis JR (2009) Size effects in the bending of thin foils. Int J Eng Sci 47:1251–1264.  https://doi.org/10.1016/j.ijengsci.2009.06.002 MathSciNetCrossRefzbMATHGoogle Scholar
  43. Jiang H, Huang Y, Zhuang Z, Hwang KC (2001) Fracture in mechanism-based strain gradient plasticity. J Mech Phys Solids 49:979–993.  https://doi.org/10.1016/S0022-5096(00)00070-3 CrossRefzbMATHGoogle Scholar
  44. Kiser MT, Zok FW, Wilkinson DS (1996) Plastic flow and fracture of a particulate metal matrix composite. Acta Mater 44:3465–3476.  https://doi.org/10.1016/1359-6454(96)00028-6 CrossRefGoogle Scholar
  45. Kuroda M, Tvergaard V (2008) A finite deformation theory of higher-order gradient crystal plasticity. J Mech Phys Solids 56:2573–2584.  https://doi.org/10.1016/j.jmps.2008.03.010 MathSciNetCrossRefzbMATHGoogle Scholar
  46. Lim YY, Munawar Chaudhri M (1999) The effect of the indenter load on the nanohardness of ductile metals: an experimental study onpolycrystalline work-hardened and annealed oxygen-free copper. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 79:2979–3000.  https://doi.org/10.1080/01418619908212037 Google Scholar
  47. Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–23CrossRefGoogle Scholar
  48. Lü Y, Wang Q, Zeng X et al (2000) Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys. Mater Sci Eng, A 278:66–76.  https://doi.org/10.1016/S0921-5093(99)00604-8 CrossRefGoogle Scholar
  49. Lubarda VA (2017) On the analysis of pure bending of rigid-plastic beams in strain-gradient plasticity. Eur J Mech A/Solids 63:43–52.  https://doi.org/10.1016/j.euromechsol.2016.12.001 MathSciNetCrossRefzbMATHGoogle Scholar
  50. Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10:853–863.  https://doi.org/10.1557/JMR.1995.0853 CrossRefGoogle Scholar
  51. Mao YQ, Ai SG, Fang DN et al (2013) Elasto-plastic analysis of micro FGM beam basing on mechanism-based strain gradient plasticity theory. Compos Struct 101:168–179.  https://doi.org/10.1016/j.compstruct.2013.01.027 CrossRefGoogle Scholar
  52. McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13:1300–1306.  https://doi.org/10.1557/JMR.1998.0185 CrossRefGoogle Scholar
  53. Muhlhaus HB, Aifantis EC (1991) The influence of microstructure-induced gradients on the localization of deformation in viscoplastic materials. Acta Mech 89:231CrossRefzbMATHGoogle Scholar
  54. Nan CW, Clarke DR (1996) The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater 44:3801–3811.  https://doi.org/10.1016/1359-6454(96)00008-0 CrossRefGoogle Scholar
  55. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425.  https://doi.org/10.1016/S0022-5096(97)00086-0 CrossRefzbMATHGoogle Scholar
  56. Park SK, Gao X-L (2006) Bernoulli-Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355–2359.  https://doi.org/10.1088/0960-1317/16/11/015 CrossRefGoogle Scholar
  57. Patel BN, Pandit D, Srinivasan SM (2017) Large elaso-plastic deflection of micro-beams using strain gradient plasticity theory. Proc Eng 173:1064–1070.  https://doi.org/10.1016/j.proeng.2016.12.186 CrossRefGoogle Scholar
  58. Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34:559–564.  https://doi.org/10.1016/1359-6462(95)00524-2 CrossRefGoogle Scholar
  59. Rhee M, Hirth JP, Zbib HM (1994) A superdislocation model for the strengthening of metal matrix composites and the initiation and propagation of shear bands. Acta Metall Mater 42:2645–2655.  https://doi.org/10.1016/0956-7151(94)90206-2 CrossRefGoogle Scholar
  60. Shell De Guzman M, Neubauer G, Flinn P, Nix WD (1993) The role of indentation depth on the measured hardness of materials. MRS Proc 308:613.  https://doi.org/10.1557/PROC-308-613 CrossRefGoogle Scholar
  61. Shi MX, Huang Y, Hwang KC (2000) Plastic flow localization in mechanism-based strain gradient plasticity. Int J Mech Sci 42:2115–2131.  https://doi.org/10.1016/S0020-7403(00)00009-6 CrossRefzbMATHGoogle Scholar
  62. Shi ZF, Huang B, Tan H et al (2008) Determination of the microscale stress-strain curve and strain gradient effect from the micro-bend of ultra-thin beams. Int J Plast 24:1606–1624.  https://doi.org/10.1016/j.ijplas.2007.12.007 CrossRefzbMATHGoogle Scholar
  63. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41:2855–2865.  https://doi.org/10.1016/0956-7151(93)90100-7 CrossRefGoogle Scholar
  64. Stölken JS, Evans G (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115.  https://doi.org/10.1016/S1359-6454(98)00153-0 CrossRefGoogle Scholar
  65. Swadener J (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50:681–694.  https://doi.org/10.1016/S0022-5096(01)00103-X CrossRefzbMATHGoogle Scholar
  66. Taylor MB, Zbib HM, Khaleel MA (2002) Damage and size effect during superplastic deformation. Int J Plast 18:415–442.  https://doi.org/10.1016/S0749-6419(00)00106-6 CrossRefzbMATHGoogle Scholar
  67. Wang W, Huang Y, Hsia KJ et al (2003) A study of microbend test by strain gradient plasticity. Int J Plast 19:365–382.  https://doi.org/10.1016/S0749-6419(01)00066-3 CrossRefzbMATHGoogle Scholar
  68. Xiang Y, Vlassak JJ (2006) Bauschinger and size effects in thin-film plasticity. Acta Mater 54:5449–5460.  https://doi.org/10.1016/j.actamat.2006.06.059 CrossRefGoogle Scholar
  69. Xue Z, Huang Y, Hwang KC, Li M (2002a) The Influence of Indenter Tip Radius on the Micro-Indentation Hardness. J Eng Mater Technol 124:371.  https://doi.org/10.1115/1.1480409 CrossRefGoogle Scholar
  70. Xue Z, Huang Y, Li M (2002b) Particle size effect in metallic materials: a study by the theory of mechanism-based strain gradient plasticity. Acta Mater 50:149–160.  https://doi.org/10.1016/S1359-6454(01)00325-1 CrossRefGoogle Scholar
  71. Zhou L, Li S, Huang S (2011) Simulation of effects of particle size and volume fraction on Al alloy strength, elongation, and toughness by using strain gradient plasticity concept. Mater Des 32:353–360.  https://doi.org/10.1016/j.matdes.2010.06.026 CrossRefGoogle Scholar
  72. Zhu HT, Zbib HM, Aifantis EC (1997) Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech 176:165–176CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations