Nanoforest-based SERS sensor fabricated using a maskless process for detecting chemical and pathogen

  • Yuan He
  • Chao Song
  • Long QueEmail author
Technical Paper


Nanoscale silicon forest-based surface enhanced Raman spectroscopy (SERS) sensor was fabricated using a simple maskless Bosch process method. Silicon nanoforest was further coated with gold and grafted with silver-plate nanoparticles. Fabricated SERS sensor was then utilized to detect 106 CFU/ml Escherichia coli (E. coli), achieving Raman signal enhancement of ~ 106. Furthermore, by detecting a mixture of R6G and E. coli, multiplexed detection was successfully demonstrated. A series of numerical simulation was performed to study the enhancement factor of the fabricated SERS sensor, matching the experimental results. Due to the simplicity of the fabrication process and its cost-effectiveness, this type of nanoforest SERS sensor is a promising cartridge-type device for a hand-held Raman spectrometer microsystem for both qualitative and quantitative detection of bacterial/viral pathogens in the field of food microbiology.



The research was funded in part by NSF ECCS 0845370 and NSF-P fund.


  1. Baia M, Baia L, Astilean S, Popp J (2006) Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Appl Phys Lett 88(14):143121CrossRefGoogle Scholar
  2. Che X, He Y, Yin H, Que L (2015) A molecular beacon biosensor based on the nanostructured aluminum oxide surface. Biosens Bioelectron 72:255–260CrossRefGoogle Scholar
  3. Deng Y, Juang Y (2014) Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis. Biosens Bioelectron 53:37–42CrossRefGoogle Scholar
  4. Deng Y, Liu Z, Song C, Hao P, Wu Y, Liu Y, Korvink JG (2016) Topology optimization of metal nanostructures for localized surface plasmon resonances. Struct Multidiscip Optimiz 53(5):967–972MathSciNetCrossRefGoogle Scholar
  5. Feng S, Chen C, Wang W, Que L (2018) An aptamer nanopore-enabled microsensor for detection of theophylline. Biosens Bioelectron 105:36–41CrossRefGoogle Scholar
  6. Goldberg-Oppenheimer P, Hutter T, Chen B, Robertson J, Hofmann S, Mahajan S (2012) Optimized vertical carbon nanotube forests for multiplex surface-enhanced Raman scattering detection. J Phys Chem Lett 3(23):3486–3492CrossRefGoogle Scholar
  7. Gu C, Huang J, Ni N, Li M, Liu J (2008) Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence. J Phys D Appl Phys 41(17):175103CrossRefGoogle Scholar
  8. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961CrossRefGoogle Scholar
  9. Harris N, Arnold MD, Blaber MG, Ford MJ (2009) Plasmonic resonances of closely coupled gold nanosphere chains. J Phys Chem C 113(7):2784–2791CrossRefGoogle Scholar
  10. He XN, Gao Y, Mahjouri-Samani M, Black PN, Allen J, Mitchell M, Xiong W, Jiang L, Lu YF (2012) Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology 23(20):205702CrossRefGoogle Scholar
  11. He Y, Li X, Que L (2014) A transparent nanostructured optical biosensor. J Biomed Nanotechnol 10(5):767–774CrossRefGoogle Scholar
  12. He Y, Che X, Que L (2016) A top-down fabrication process for vertical hollow silicon nanopillars. J Microelectromech Syst 25(4):662–667CrossRefGoogle Scholar
  13. Kao P, Malvadkar NA, Cetinkaya M, Wang H, Allara DL, Demirel MC (2008) Surface enhanced Raman detection of bacteria on metalized nanostructured poly(p-xylylene) film. Adv Mater 20:3562–3565CrossRefGoogle Scholar
  14. Li H, Baum CE, Sun J, Cullum BM (2006) Multilayer enhanced gold film over nanostructure surface-enhanced Raman substrates. Appl Spectrosc 60(12):1377–1385CrossRefGoogle Scholar
  15. Li JM, Wei C, Ma WF, An Q, Guo J, Hu J, Wang CC (2012) Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres. J Mater Chem 22(24):12100–12106CrossRefGoogle Scholar
  16. Li X, He Y, Zhang T, Que L (2013a) Aluminum oxide nanostructure-based substrates for fluorescence enhancement. Opt Express 20(19):21272–21277CrossRefGoogle Scholar
  17. Li X, He Y, Que L (2013b) Fluorescence detection and imaging of biomolecules using the micropatterned nanostructured aluminum oxide. Langmuir 29(7):2439–2445CrossRefGoogle Scholar
  18. Li X, Yin H, Que L (2014) A nanostructured aluminum oxide-based microfluidic device for enhancing immunoassay’s fluorescence and detection sensitivity. Biomed Microdevice 16(5):771–777CrossRefGoogle Scholar
  19. Lo HC, Hsiung HI, Chattopadhyay S, Han HC, Chen CF, Leu JP, Chen KH, Chen LC (2011) Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Biosens Bioelectron 26(5):2413–2418CrossRefGoogle Scholar
  20. Mehran M, Mohajerzadeh S, Sanaee Z, Abdi Y (2010) Nanograss and nanostructure formation on silicon using a modified deep reactive ion etching. Appl Phys Lett 96:2031011–2031013CrossRefGoogle Scholar
  21. Song C, Ding X, Que L (2018a) High-resolution, flexible and transparent nanopore thin film sensor enabled by cascaded Fabry-Perot effect. Opt Lett 43(13):3057–3060CrossRefGoogle Scholar
  22. Song C, Deng P, Que L (2018b) Rapid multiplexed detection of beta-amyloid and total-tau as biomarkers for Alzheimer’s disease in cerebrospinal fluid. Nanomedicine 14(6):1845–1852CrossRefGoogle Scholar
  23. Sun Y, Fan X (2011) Optical ring resonators for biochemical and chemical sensing. Anal Bioanal Chem 339(1):205–211CrossRefGoogle Scholar
  24. Tang Y, Xu X, Fang J, Liang Y, Ji HF (2006) The growth and superhydrophobicity of a perfluorocarbon nanoneedle array on an SiO2 surface. IEEE Trans Nanotechnol 5(4):415–419CrossRefGoogle Scholar
  25. Vo-Dinh T, Wang HN, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102Google Scholar
  26. Wu G, Datar R, Hansen K, Thundat T, Cote R, Majumdar A (2000) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860CrossRefGoogle Scholar
  27. Zheng G, Patolsky F, Cui Y, Wang W, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301CrossRefGoogle Scholar
  28. Zribi A, Kennerly SJ, Claydon GS, Que L, Banerjee A, Chandrasekaran S, Goravar SN, Hays DC, General Electric Co (2009) Compact, hand-held raman spectrometer microsystem on a chip. US Patent 7,505,128Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringIowa State UniversityAmesUSA

Personalised recommendations