Design and performance evaluation of a novel stick–slip piezoelectric linear actuator with a centrosymmetric-type flexure hinge mechanism

  • Feng Qin
  • Hu Huang
  • Jiru Wang
  • Hongwei ZhaoEmail author
Technical Paper


A stick–slip actuator with a centrosymmetric type flexure hinge mechanism was presented in this paper. The dimension of the actuator is approximately 83 mm × 82 mm × 19 mm. The positive and the negative motions could be achieved by two piezo stacks and one flexure hinge mechanism. To study the output characteristics, the actuator was fabricated and tested under various experimental conditions. The results showed that the maximum speeds of the positive and negative motions were 2.893 mm/s and 2.747 mm/s respectively, the maximum load was 3.8 N for both the positive and negative motions, the real displacement of a step of the positive and negative motions were 8.367 μm and 8.412 μm. Furthermore, the backward motion of the actuator had been greatly suppressed, which was beneficial to their wide applications in the fields of aerospace, precision-optics, nanomechanics, and so on.



This research was funded by the National Natural Science Funds for Excellent Young Scholar (51422503), the special fund project of Jilin provincial industrial innovation (2016C030), Jilin Provincial Middle and Young Scientific and Technological Innovation Talent and Team Project (20170519001JH), and Program for JLU Science and Technology Innovative Research Team (2017TD-04).


  1. Chang SJ, Chen J (2013) Design and fabrication of the large thrust force piezoelectric actuator. Adv Mater Sci Eng 2013(9):547–552Google Scholar
  2. Chen LS, Yen JY, Chen J, Kuo FC (2013) Precision tracking of a piezo-driven stage by charge feedback control. Precis Eng 37(4):793–804CrossRefGoogle Scholar
  3. Cheng T, He M, Li H, Lu X, Zhao H, Gao H (2017) A novel trapezoid-type stick–slip piezoelectric linear actuator using right circular flexure hinge mechanism. IEEE Trans Ind Electron 64(7):5545–5552CrossRefGoogle Scholar
  4. Fleming AJ, Leang KK (2014) Design, modeling and control of nanopositioning systems. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  5. Gu GY, Zhu LM, Su CY (2014) High-precision control of piezoelectric nanopositioning stages using hysteresis compensator and disturbance observer. Smart Mater Struct 23(10):105007CrossRefGoogle Scholar
  6. Guo J, Chee SK, Yano T, Higuchi T (2013) Micro-vibration stage using piezo actuators. Sensor Actuat A Phys 194:119–127CrossRefGoogle Scholar
  7. Hou X, Lee HP, Ong CJ, Lim SP (2013) Development and numerical characterization of a new standing wave ultrasonic motor operating in the 30–40 kHz frequency range. Ultrasonics 53(5):928–934CrossRefGoogle Scholar
  8. Huang H, Zhao H (2014) Forward and reverse movements of a linear positioning stage based on the parasitic motion principle. Adv Mech Eng 2014:452560CrossRefGoogle Scholar
  9. Huang H, Zhao H, Yang Z, Mi J, Fan Z, Wan S et al (2012) A novel driving principle by means of the parasitic motion of the microgripper and its preliminary application in the design of the linear actuator (piezo actuator). Rev Sci Instrum 83(5):055002CrossRefGoogle Scholar
  10. Iula A, Corbo A, Pappalardo M (2010) Fe analysis and experimental evaluation of the performance of a travelling wave rotary motor driven by high power ultrasonic transducers. Sensor Actuat A Phys 160(1–2):94–100CrossRefGoogle Scholar
  11. Kang D, Lee MG, Gweon D (2007) Development of compact high precision linear piezoelectric stepping positioner with nanometer accuracy and large travel range. Rev Sci Instrum 78(7):427CrossRefGoogle Scholar
  12. Kim H, Gweon DG (2012) Development of a compact and long range xyθz nano-positioning stage. Rev Sci Instrum 83(8):085102CrossRefGoogle Scholar
  13. Li J, Zhao H, Qu H, Cui T, Fu L, Huang H et al (2013) A piezoelectric-driven rotary actuator by means of inchworm motion. Sensor Actuat A Phys 194(5):269–276CrossRefGoogle Scholar
  14. Li J, Zhou X, Zhao H, Shao M, Hou P, Xu X (2015a) Design and experimental performances of a piezoelectric linear actuator by means of lateral motion. Smart Mater Struct 24(6):065007CrossRefGoogle Scholar
  15. Li J, Zhao H, Shao M, Zhou X, Fan Z (2015b) Design and experimental research of an improved stick-slip type piezo-driven linear actuator. Adv Mech Eng 7(9):1–8Google Scholar
  16. Li H, Li Y, Cheng T, Lu X, Zhao H, Gao H (2017) A symmetrical hybrid driving waveform for a linear piezoelectric stick–slip actuator. IEEE Access 5:16885–16894CrossRefGoogle Scholar
  17. Liu Y, Chen W, Liu J, Shi S (2010) Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer. PLoS One 5(4):e10020CrossRefGoogle Scholar
  18. Liu Y, Yang X, Chen W, Xu D (2016) A bonded-type piezoelectric actuator using the first and second bending vibration modes. IEEE Trans Ind Electron 63(3):1676–1683CrossRefGoogle Scholar
  19. Lu H, Zhu J, Lin Z, Guo Y (2009) An inchworm mobile robot using electromagnetic linear actuator. Mechatronics 19(7):1116–1125CrossRefGoogle Scholar
  20. Palosaari J, Leinonen M, Juuti J, Hannu J, Jantunen H (2014) Piezoelectric circular diaphragm with mechanically induced pre-stress for energy harvesting. Smart Mater Struct 23(8):085025CrossRefGoogle Scholar
  21. Salisbury SP, Waechter DF, Mrad RB, Prasad SE, Blacow RG, Yan B (2006) Design considerations for complementary inchworm actuators. IEEE/ASME Trans Mechatron 11(3):265–272CrossRefGoogle Scholar
  22. Shi J, Liu B (2011) Optimum efficiency control of traveling-wave ultrasonic motor system. IEEE Trans Ind Electron 58(10):4822–4829CrossRefGoogle Scholar
  23. Shi Y, Zhao C (2011) A new standing-wave-type linear ultrasonic motor based on in-plane modes. Ultrasonics 51(4):397–404CrossRefGoogle Scholar
  24. Tenzer PE, Mrad RB (1960) A systematic procedure for the design of piezoelectric inchworm precision positioners. IEEE/ASME Trans Mechatron 9(2):427–435CrossRefGoogle Scholar
  25. Tian Y, Zhang D, Shirinzadeh B (2011) Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis Eng 35(4):554–565CrossRefGoogle Scholar
  26. Uchino K (2015) Piezoelectric actuator renaissance. Phase Transit 88(3):14CrossRefGoogle Scholar
  27. Wang S, Rong W, Wang L, Sun L (2016) Design analysis and experimental performance of a stepping type piezoelectric linear actuator based on compliant foot driving. Smart Mater Struct 25(11):115003CrossRefGoogle Scholar
  28. Wu Z, Li Y (2014) Design, modeling, and analysis of a novel microgripper based on flexure hinges. Adv Mech Eng 2014(8):1–11Google Scholar
  29. Yao Q, Dong J, Ferreira PM (2007) Design, analysis, fabrication and testing of a parallel-kinematic micropositioning xy, stage. Int J Mach Tool Manuf 47(6):946–961CrossRefGoogle Scholar
  30. Yong YK, Moheimani SOR, Kenton BJ, Leang KK (2012) Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. Rev Sci Instrum 83(12):802–843CrossRefGoogle Scholar
  31. Yun CH, Ishii T, Nakamura K, Ueha S, Akashi K (2001) A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped langevin type transducer. Jpn J Appl Phys 40(5):3773–3776CrossRefGoogle Scholar
  32. Zhang ZM, An Q, Li JW, Zhang WJ (2012) Piezoelectric friction–inertia actuator—a critical review and future perspective. Inte J Adv Manuf Technol 62(5–8):669–685CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringJilin University (Nanling Campus)ChangchunPeople’s Republic of China

Personalised recommendations