Advertisement

Control of a caterpillar robot manipulator using hybrid control

  • Mehran RahmaniEmail author
Technical Paper
  • 22 Downloads

Abstract

In recent years, bio-inspired robots have been applied in different fields such as inspecting of oil and gas pipes, medical devices and rescue issues. Designing an excellent control algorithm for the Caterpillar robot manipulator is so difficult due to the high nonlinearity and multi-input/multi-outputs features. In addition, a fast and robust response are the most important tasks in the robot manipulator control process. In this paper existing integral terminal sliding mode control (ITSMC) approach for systems is improved by a super-twisting control (STC). Therefore, the chattering phenomena can be reduced by using the STC. This proposed controller is robust because of the combination of two controls. The desired angle of the robot has been obtained using the proposed controller. The proposed controller is compared with three other controllers such as sliding mode control (SMC), terminal sliding mode control (TSMC) and ITSMC. The numerical simulation results demonstrate that it can obtain better performance by using the proposed controller.

Notes

References

  1. Amer AF, Sallam EA, Elawady WM (2011) Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Appl Soft Comput 11(8):4943–4953CrossRefGoogle Scholar
  2. Bagheri A, Azadi S, Soltani S (2017) A combined use of adaptive sliding mode control and unscented Kalman filter estimator to improve vehicle yaw stability. Proc Inst Mech Eng Part K J Multi-body Dyn 231(2):388–401Google Scholar
  3. Bartolini G, Punta E, Zolezzi T (2004) Simplex methods for nonlinear uncertain sliding-mode control. Autom Control IEEE Trans 49(6):922–933MathSciNetCrossRefGoogle Scholar
  4. Bodnicki M, Kamiński D (2014) In-pipe microrobot driven by SMA elements. In: Mechatronics 2013. Springer International Publishing, Cham, pp 527–533Google Scholar
  5. Capisani LM, Ferrara A (2012) Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. Indus Electron IEEE Trans 59(8):3189–3198CrossRefGoogle Scholar
  6. Chen M, Wu QX, Cui RX (2013) Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans 52(2):198–206CrossRefGoogle Scholar
  7. Edwards C, Spurgeon S (1998) Sliding mode control: theory and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  8. Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167MathSciNetCrossRefGoogle Scholar
  9. Ghanbari A, Noorani SMRS (2011) Optimal trajectory planning for design of a crawling gait in a robot using genetic algorithm. Int J Adv Rob Syst 8(1):29–36Google Scholar
  10. Ghanbari A, Rostami A, Noorani SMRS, Fakhrabadi MMS (2008) Modeling and simulation of inchworm mode locomotion. In: International conference on intelligent robotics and applications. Springer, Berlin, Heidelberg, pp. 617–624Google Scholar
  11. Herman P (2005) Sliding mode control of manipulators using first-order equations of motion with diagonal mass matrix. J Franklin Inst 342(4):353–363MathSciNetCrossRefGoogle Scholar
  12. Hopkins JK, Gupta SK (2014) Design and modeling of a new drive system and exaggerated rectilinear-gait for a snake-inspired robot. J Mech Robot 6(2):021001CrossRefGoogle Scholar
  13. Kim S, Hawkes E, Cho K, Joldaz M, Foleyz J, Wood R (2009) Micro artificial muscle fiber using NiTi spring for soft robotics. In: Intelligent robots and systems, 2009. IROS 2009. IEEE/RSJ International Conference on IEEE, pp 2228–2234Google Scholar
  14. Komurcugil H (2012) Adaptive terminal sliding-mode control strategy for DC–DC buck converters. ISA Trans 51(6):673–681CrossRefGoogle Scholar
  15. Kumar R, Chalanga A, Bandyopadhyay B (2015) Smooth integral sliding mode controller for the position control of Stewart platform. ISA Trans 58:543–551CrossRefGoogle Scholar
  16. Lee H, Utkin VI (2007) Chattering suppression methods in sliding mode control systems. Ann Rev Control 31(2):179–188CrossRefGoogle Scholar
  17. Lu YS (2009) Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives. Indus Electron IEEE Trans 56(9):3743–3750CrossRefGoogle Scholar
  18. Moreno J, Osorio M (2012) Strict Lyapunov functions for the super-twisting algorithm. Autom Control IEEE Trans 57(4):1035–1040MathSciNetCrossRefGoogle Scholar
  19. Mou C, Jiang CS, Bin J, Wu QX (2009) Sliding mode synchronization controller design with neural network for uncertain chaotic systems. Chaos Solitons Fractals 39(4):1856–1863CrossRefGoogle Scholar
  20. Nekoukar V, Erfanian A (2011) Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets Syst 179(1):34–49MathSciNetCrossRefGoogle Scholar
  21. Onal CD, Wood RJ, Rus D (2011) Towards printable robotics: origami-inspired planar fabrication of three-dimensional mechanisms. In: Robotics and automation (ICRA), 2011 IEEE International Conference on IEEE, pp 4608–4613Google Scholar
  22. Onal CD, Wood RJ, Rus D (2013) An origami-inspired approach to worm robots. Mech IEEE/ASME Trans 18(2):430–438CrossRefGoogle Scholar
  23. Plestan F, Shtessel Y, Bregeault V, Poznyak A (2010) New methodologies for adaptive sliding mode control. Int J Control 83(9):1907–1919MathSciNetCrossRefGoogle Scholar
  24. Polyakov A, Poznyak A (2009) Reaching time estimation for “super-twisting” second order sliding mode controller via Lyapunov function designing. Autom Control IEEE Trans 54(8):1951–1955MathSciNetCrossRefGoogle Scholar
  25. Qi L, Shi H (2013) Adaptive position tracking control of permanent magnet synchronous motor based on RBF fast terminal sliding mode control. Neurocomputing 115:23–30CrossRefGoogle Scholar
  26. Rahmani M, Rahman MH (2018) Novel robust control of a 7-DOF exoskeleton robot. PLoS one 13(9):e0203440CrossRefGoogle Scholar
  27. Rahmani M, Ghanbari A, Ettefagh MM (2016a) Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst Appl 56:164–176CrossRefGoogle Scholar
  28. Rahmani M, Ghanbari A, Ettefagh MM (2016b) Hybrid neural network fraction integral terminal sliding mode control of an inchworm robot manipulator. Mech Syst Signal Process 80:117–136CrossRefGoogle Scholar
  29. Rahmani M, Ghanbari A, Ettefagh MM (2018) A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm. J Vib Control 24(10):2045–2060MathSciNetCrossRefGoogle Scholar
  30. Seok S, Onal CD, Cho KJ, Wood RJ, Rus D, Kim S (2013) Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. Mechatron IEEE/ASME Trans 18(5):1485–1497CrossRefGoogle Scholar
  31. Soltanpour MR, Khooban MH, Khalghani MR (2016) An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode. J Vib Control 22(1):159–175MathSciNetCrossRefGoogle Scholar
  32. Tiwari PM, Janardhanan S, un Nabi M (2015) Rigid spacecraft attitude control using adaptive integral second order sliding mode. Aerosp Sci Technol 42:50–57CrossRefGoogle Scholar
  33. Utkin VI, Poznyak AS (2013) Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1):39–47MathSciNetCrossRefGoogle Scholar
  34. Wang YK, Song CN, Wang ZL, Guo C, Tan QY (2011) A SMA actuated earthworm-like robot. In: Intelligent computing and information science. Springer, Berlin, Heidelberg, pp 619–624Google Scholar
  35. Wu L, Su X, Shi P (2012) Sliding mode control with bounded ℒ2 gain performance of Markovian jump singular time-delay systems. Automatica 48(8):1929–1933MathSciNetCrossRefGoogle Scholar
  36. Yamashita A, Matsui K, Kawanishi R, Kaneko T, Murakami T, Omori H et al (2011) Self-localization and 3-D model construction of pipe by earthworm robot equipped with omni-directional rangefinder. In: Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on IEEE, pp 1017–1023Google Scholar
  37. Zarrouk D, Shoham M (2013) Energy requirements of inchworm crawling on a flexible surface and comparison to earthworm crawling. In: Robotics and automation (ICRA), 2013 IEEE International Conference on IEEE, pp 3342–3347Google Scholar
  38. Zarrouk D, Sharf I, Shoham M (2010) Analysis of earthworm-like robotic locomotion on compliant surfaces. In: Robotics and automation (ICRA), 2010 IEEE International Conference on IEEE, pp 1574–1579Google Scholar
  39. Zarrouk D, Sharf I, Shoham M (2011) Analysis of wormlike robotic locomotion on compliant surfaces. IEEE Trans Biomed Eng 58(2):301–309CrossRefGoogle Scholar
  40. Zarrouk D, Sharf I, Shoham M (2012) Experimental validation of locomotion efficiency of worm-like robots and contact compliance. In: Robotics and automation (ICRA), 2012 IEEE International Conference on IEEE, pp 5080–5085Google Scholar
  41. Zhao D, Li S, Gao F (2009) A new terminal sliding mode control for robotic manipulators. Int J Control 82(10):1804–1813MathSciNetCrossRefGoogle Scholar
  42. Zhou M, Tao Y, Cheng L, Liu WT, Fu X (2013) A biomimetic earthworm-like micro robot using nut-type piezoelectric motor. In: Intelligent robotics and applications. Springer, Berlin, pp 129–135Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations