Advertisement

Fabrication and evaluation of nanostructured microelectrodes for high-spatial resolution in retinal prostheses

  • Yeok In Choi
  • Kangil Kim
  • Sangmin LeeEmail author
Technical Paper
  • 58 Downloads

Abstract

To provide visual information to patients with retinal degenerative disease, retinal prosthetic devices based on multi-channel microelectrode arrays (MEAs) have shown some promising results. For high-quality information, the number of microelectrodes should be increased in the limited area of MEAs, which results in decreased dimensions of the single microelectrode and a limit of dynamic range of injection current. Previously, our research group has presented 3D microelectrodes to overcome the trade-off between high-spatial resolution and injection current range. However, the 3D microelectrode requires a complex fabrication process, including multiple steps in front-side and back-side microfabrication. In this paper, the nanostructured microelectrode with platinum-black is fabricated with a simple process, and its electrical characteristics are evaluated. The nanostructured microelectrode parameters are analyzed by a conventional three-element circuit model. The comprehensive electrical characteristics between planar 2D, 3D, and nanostructured microelectrodes with various base areas are compared by measuring electrode–electrolyte interface impedance and maximum allowable injection current limit. The experimental results show improved interface impedance in nanostructured microelectrodes compared to planar 2D and 3D microelectrodes with same base area. This implies that nanostructured microelectrodes have a large dynamic range for current stimulation, which can be more sufficient in retinal neuron stimulation. This research can be used to estimate the theoretical limit of injection current for high-resolution MEAs.

Notes

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP; Ministry of Science, ICT, & Future Planning (No. NRF-2017R1C1B5017561 and No. NRF-2017M3A9E2062707).

References

  1. Allen JB, Larry RF (2001) Electrochemical Methods: Fundamentals and Applications, 2nd edn. Weily, New YorkGoogle Scholar
  2. Asakawa K, Ishikawa H, Uga S, Mashimo K, Kondo M, Terasaki H (2016) Histopathological changes of inner retina, optic disc, and optic nerve in rabbit with advanced retinitis pigmentosa. Neuro-Ophthalmology 1:1–6Google Scholar
  3. Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A, Mahadevappa M, Yanai D, McMahon M, Humayun M, Greenberg R, Weiland J, Fine I (2008) Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci 49:2303–2314CrossRefGoogle Scholar
  4. Chen K, Yang Z, Hoang L, Weiland J, Humayun M, Liu W (2010) An Integrated 256-Channel Epiretinal Prosthesis. IEEE J Solid-State Circuits 45(9):1946–1956CrossRefGoogle Scholar
  5. Chen S, Pei W, Gui Q, Tang R, Chen Y, Zhao S, Wang H, Chen H (2013) PEDOT/MWCNT composite film coated microelectrode arrays for neural interface improvement. Sensors Actuators A: Phys 193:141–148CrossRefGoogle Scholar
  6. Chun H, Yang Y, Lehmann T (2014) Safety ensuring retinal prosthesis with precise charge balance and low power consumption. IEEE Trans Biomed Eng 8(1):108–118Google Scholar
  7. Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, Kempen J, Taylor HR, Mitchell P (2004) Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 122:477–485CrossRefGoogle Scholar
  8. Emerich D, Thanos C (2008) NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther 10(5):506Google Scholar
  9. Gabay T, Ben-David M, Kalifa I, Sorkin R, Abrams ZR, Ben-Jacob E, Hanein Y (2007) Electro-chemical and biological properties of carbon nanotube based multielectrode arrays. Nanotechnology 18(3):35201CrossRefGoogle Scholar
  10. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. The Lancet 368(9549):1795–1809CrossRefGoogle Scholar
  11. Humayun MS, De Juan E, Del Cerro M, Dagnelie G, Radner W, Sadda SR, Del Cerro C (2000) Human neural retinal transplantation. Invest Ophthalmol Vis Sci 41(10):3100–3106Google Scholar
  12. Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Marmor M, Marc RE (2016) Retinal remodeling in human retinitis pigmentosa. Exp Eye Res 150:149–165CrossRefGoogle Scholar
  13. Ko H, Lee S (2017) Electrical characterization of 2D and 3D microelectrodes for achieving high-resolution sensing in retinal prostheses with in vitro animal experimental results. Microsyst Technol 23:473–481CrossRefGoogle Scholar
  14. Ko H, Lee S, Ahn J, Hong SJ, Yoo HJ, Jung SW, Park SK, Cho D (2013) Current stimulator with adaptive supply regulator for visual prostheses. J Biomed Nanotechnol 9(6):992–997CrossRefGoogle Scholar
  15. Liu MM, Tuo J, Chan CC (2011) Gene therapy for ocular diseases. Br J Ophthalmol 95(5):604–612CrossRefGoogle Scholar
  16. Nishida K, Kamei M, Kondo M, Sakaguchi H, Suzuki M, Fujikado T, Tano Y (2010) Efficacy of suprachoroidal-transretinal stimulation in a rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci 51:2263–2268CrossRefGoogle Scholar
  17. Park S, Song YJ, Boo H, Chung TD (2010) Nanoporous Pt microelectrode for neural stimulation and recording: in vitro characterization. J Phys Chem C 114(19):8721–8726CrossRefGoogle Scholar
  18. Pérez Fornos A, Sommerhalder J, Pittard A, Safran AB, Pelizzone M (2008) Simulation of artificial vision: IV. Visual information required to achieve simple pointing and manipulation tasks. Vision Res 48(16):1705–1718CrossRefGoogle Scholar
  19. Seok C, Kim H, Im S, Song H, Lim K, Goo YS, Koo K, Cho D, Ko H (2014) A 16-channel neural stimulator IC with DAC sharing scheme for artificial retinal prostheses. J Semicond Technol Sci 14(5):658–665CrossRefGoogle Scholar
  20. Tokuda T, Hiyama K, Sawamura S, Sasagawa K, Terasawa Y, Nishida K, Kitaguchi Y, Fujikado T, Tano Y, Ohta J (2009) CMOS-based multichip networked flexible retinal stimulator designed for image-based retinal prosthesis. IEEE Trans Electron Devices 56(11):2577–2585CrossRefGoogle Scholar
  21. Tran N, Bai S, Yang J, Chun H, Kavehei O, Yang Y, Muktamath V, Ng D, Meffin H, Halpern M, Skafidas E (2014) A complete 256-electrode retinal prosthesis chip. IEEE J Solid-State Circuits 49(3):751–765CrossRefGoogle Scholar
  22. Wendy F, Iwan S, Patrik S, Andreas H (2005) Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng 52(7):1295–1302CrossRefGoogle Scholar
  23. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614CrossRefGoogle Scholar
  24. Zrenner E, Miliczek K, Gabel V, Graf H, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280CrossRefGoogle Scholar
  25. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc B: Biol Sci 278(1711):1489–1497CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringKyung Hee UniversityYongin, GyeonggiRepublic of Korea

Personalised recommendations