Skip to main content
Log in

Chaotic dynamics of a non-autonomous nonlinear system for a smart composite shell subjected to the hygro-thermal environment

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this research, nonlinear dynamic behaviors of multiscale composites doubly curved shells have been investigated by employing multiple scales Perturbation Method. Three-phase composites shells with polymer/Carbon nanotube/fiber (PCF) according to Halpin–Tsai model have been assumed. The displacement- strain of nonlinear vibration of multiscale laminated doubly curved shells via higher order shear deformation (HSDT) theory and using Green–Lagrange nonlinear shell theory is obtained. The governing equations of composite doubly curved shell have been derived by implementing Hamilton’s principle and shell considered to be simply supported. For investigating correctness and accuracy, this paper is validated by other previous researches. Finally, bifurcation diagram, phase portraits and Poincare maps are investigated. The results indicate different dimensionless force; curvature ratio and kind of distribution pattern have strong influence on nonlinear vibration control of the composite multiscale doubly curved shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahouel M, Houari MSA, Bedia EA, Tounsi A (2016) Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos Struct 20(5):963–981

    Article  Google Scholar 

  • Alijani F, Amabili M (2013) Theory and experiments for nonlinear vibrations of imperfect rectangular plates with free edges. J Sound Vib 332(14):3564–3588

    Article  Google Scholar 

  • Alijani F, Amabili M, Karagiozis K, Bakhtiari-Nejad F (2011) Nonlinear vibrations of functionally graded doubly curved shallow shells. J Sound Vib 330(7):1432–1454

    Article  Google Scholar 

  • Amabili M, Reddy JN (2010) A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. Int J Non-Linear Mech 45(4):409–418

    Article  Google Scholar 

  • Ansari R, Torabi J (2016) Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading. Compos B Eng 95:196–208

    Article  Google Scholar 

  • Belabed Z, Bousahla AA, Houari MSA, Tounsi A, Mahmoud SR (2018) A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate. Earthq Struct 14(2):103–115

    Google Scholar 

  • Beldjelili Y, Tounsi A, Mahmoud SR (2016) Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Struct Syst 18(4):755–786

    Article  Google Scholar 

  • Bellifa H, Benrahou KH, Hadji L, Houari MSA, Tounsi A (2016) Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J Braz Soc Mech Sci Eng 38(1):265–275

    Article  Google Scholar 

  • Bellifa H, Bakora A, Tounsi A, Bousahla AA, Mahmoud SR (2017a) An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates. Steel Compos Struct 25(3):257–270

    Google Scholar 

  • Bellifa H, Benrahou KH, Bousahla AA, Tounsi A, Mahmoud SR (2017b) A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct Eng Mech 62(6):695–702

    Google Scholar 

  • Besseghier A, Houari MSA, Tounsi A, Mahmoud SR (2017) Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory. Smart Struct Syst 19(6):601–614

    Google Scholar 

  • Bouderba B, Houari MSA, Tounsi A, Mahmoud SR (2016) Thermal stability of functionally graded sandwich plates using a simple shear deformation theory. Struct Eng Mech 58(3):397–422

    Article  Google Scholar 

  • Boukhari A, Atmane HA, Tounsi A, Adda B, Mahmoud SR (2016) An efficient shear deformation theory for wave propagation of functionally graded material plates. Struct Eng Mech 57(5):837–859

    Article  Google Scholar 

  • Bounouara F, Benrahou KH, Belkorissat I, Tounsi A (2016) A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos Struct 20(2):227–249

    Article  Google Scholar 

  • Bourada M, Kaci A, Houari MSA, Tounsi A (2015) A new simple shear and normal deformations theory for functionally graded beams. Steel Compos Struct 18(2):409–423

    Article  Google Scholar 

  • Bousahla AA, Benyoucef S, Tounsi A, Mahmoud SR (2016) On thermal stability of plates with functionally graded coefficient of thermal expansion. Struct Eng Mech 60(2):313–335

    Article  Google Scholar 

  • Chen WQ, Cai JB, Ye GR (2003) Exact solutions of cross-ply laminates with bonding imperfections. AIAA J 41(11):2244–2250

    Article  Google Scholar 

  • Chikh A, Tounsi A, Hebali H, Mahmoud SR (2017) Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Struct Syst 19(3):289–297

    Article  Google Scholar 

  • Chorfi SM, Houmat A (2010) Non-linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-form. Compos Struct 92(10):2573–2581

    Article  Google Scholar 

  • El-Haina F et al (2017) A simple analytical approach for thermal buckling of thick functionally graded sandwich plates. Struct Eng Mech 63(5):585–595

    Google Scholar 

  • Fan Y, Wang H (2017) Nonlinear low-velocity impact on damped and matrix-cracked hybrid laminated beams containing carbon nanotube reinforced composite layers. Nonlinear Dyn 89(3):1863–1876

    Article  MathSciNet  Google Scholar 

  • Feng C, Kitipornchai S, Yang J (2017) Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos B Eng 110:132–140

    Article  Google Scholar 

  • Fourn H, Atmane HA, Bourada M, Bousahla AA, Tounsi A, Mahmoud SR (2018) A novel four variable refined plate theory for wave propagation in functionally graded material plates. Steel Compos struct 27(1):109–122

    Google Scholar 

  • Gao XL, Li K (2005) A shear-lag model for carbon nanotube-reinforced polymer composites. Int J Solids Struct 42(5):1649–1667

    Article  MATH  Google Scholar 

  • Heydari MM, Bidgoli AH, Golshani HR, Beygipoor G, Davoodi A (2015) Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric temperature-dependent plate resting on orthotropic elastomeric medium using GDQM. Nonlinear Dyn 79(2):1425–1441

    Article  Google Scholar 

  • Houari MSA, Tounsi A, Bessaim A, Mahmoud SR (2016) A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates. Steel Compos Struct 22(2):257–276

    Article  Google Scholar 

  • Hu N, Qiu J, Li Y, Chang C, Atobe S, Fukunaga H et al (2013) Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Res Lett 8:1–8

    Article  Google Scholar 

  • Kaci A, Houari MSA, Bousahla AA, Tounsi A, Mahmoud SR (2018) Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory. Struct Eng Mech 65(5):621–631

    Google Scholar 

  • Karami B, Janghorban M, Tounsi A (2017) Effects of triaxial magnetic field on the anisotropic nanoplates. Steel Compos Struct 25(3):361–374

    Google Scholar 

  • Karami B, Janghorban M, Tounsi A (2018a) Variational approach for wave dispersion in anisotropic doublycurved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct 129:251–264

    Article  Google Scholar 

  • Karami B, Janghorban M, Tounsi A (2018b) Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel Compos Struct 27(2):201–216

    Google Scholar 

  • Karami B, Janghorban M, Shahsavari D, Tounsi A (2018c) A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates. Steel Compos Struct 28(1):99–110

    Google Scholar 

  • Khetir H, Bouiadjra MB, Houari MSA, Tounsi A, Mahmoud SR (2017) A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates. Struct Eng Mech 64(4):391–402

    Google Scholar 

  • Kim M, Park YB, Okoli OI, Zhang C (2009) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69(3):335–342

    Article  Google Scholar 

  • Lee DM, Lee I (1997) Vibration behaviors of thermally postbuckled anisotropic plates using first-order shear deformable plate theory. Comput Struct 63(3):371–378

    Article  MATH  Google Scholar 

  • Mahapatra TR, Kar VR, Panda SK (2015) Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment. J Sandwich Struct Mater 17(5):511–545

    Article  Google Scholar 

  • Mahapatra TR, Panda SK, Kar VR (2016a) Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading—a micromechanical approach. Int J Comput Methods 13(03):1650015

    Article  MathSciNet  MATH  Google Scholar 

  • Mahapatra TR, Panda SK, Dash S (2016b) Effect of hygrothermal environment on the nonlinear free vibration responses of laminated composite plates: a nonlinear Unite element micromechanical approach. In: IOP conference series: materials science and engineering, vol 149, no. 1. IOP Publishing, Bristol

  • Mahi A, Tounsi A (2015) A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl Math Model 39(9):2489–2508

    Article  MathSciNet  Google Scholar 

  • Mehar K, Panda SK, Mahapatra TR (2017a) Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure. Eur J Mech-A/Solids 65:384–396

    Article  MathSciNet  MATH  Google Scholar 

  • Mehar K, Panda SK, Bui TQ, Mahapatra TR (2017b) Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM. J Therm Stresses 40(7):899–916

    Article  Google Scholar 

  • Mehar K, Panda SK, Mahapatra TR (2018a) Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method. Scientia Iranica 25(5):2722–2737

    Google Scholar 

  • Mehar K, Panda SK, Mahapatra TR (2018b) Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses. Proc Inst Mech Eng Part G J Aerosp Eng (0954410018761192)

  • Menasria A, Bouhadra A, Tounsi A, Bousahla AA, Mahmoud SR (2017) A new and simple HSDT for thermal stability analysis of FG sandwich plates. Steel Compos Struct 25(2):157–175

    Google Scholar 

  • Mokhtar Y, Heireche H, Bousahla AA, Houari MSA, Tounsi A, Mahmoud SR (2018) A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart Struct Syst 21(4):397–405

    Google Scholar 

  • Mouffoki A, Bedia EA, Houari MSA, Tounsi A, Mahmoud SR (2017) Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory. Smart Struct Syst 20(3):369–383

    Google Scholar 

  • Naidu NS, Sinha PK (2007) Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments. Compos Struct 77(4):475–483

    Article  Google Scholar 

  • Odegard GM, Frankland SJV, Gates TS (2005) Effect of nanotube functionalization on the elastic properties of polyethylene nanotube composites. Aiaa J 43(8):1828

    Article  Google Scholar 

  • Panda SK, Singh BN (2008) Non-linear free vibration analysis of laminated composite cylindrical/hyperboloid shell panels based on higher-order shear deformation theory using non-linear finite-element method. Proc Inst Mech Eng Part G J Aerosp Eng 222(7):993–1006

    Article  Google Scholar 

  • Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct 96:716–725

    Article  Google Scholar 

  • Sahmani S, Aghdam MM (2017) Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int J Mech Sci 131:95–106

    Article  Google Scholar 

  • Shahsavari D, Karami B, Fahham HR, Li L (2018) On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory. Acta Mech 229(11):4549–4573

    Article  MathSciNet  Google Scholar 

  • Sharma N, Mahapatra TR, Panda SK (2018a) Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment. J Sound Vib 431:346–366

    Article  Google Scholar 

  • Sharma N, Mahapatra TR, Panda SK (2018b) Thermoacoustic behavior of laminated composite curved panels using higher-order finite-boundary element model. Int J Appl Mech 10(02):1850017

    Article  Google Scholar 

  • Shen HS (2009) A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators. Compos Struct 91(3):375–384

    Article  Google Scholar 

  • Shen HS, Chen X, Guo L, Wu L, Huang XL (2015) Nonlinear vibration of FGM doubly curved panels resting on elastic foundations in thermal environments. Aerosp Sci Technol 47:434–446

    Article  Google Scholar 

  • Shen HS, Lin F, Xiang Y (2017) Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn 90(2):899–914

    Article  Google Scholar 

  • Shiau LC, Kuo SY (2006) Free vibration of thermally buckled composite sandwich plates. J Vib Acoust 128(1):1–7

    Article  Google Scholar 

  • Singh VK, Panda SK (2014) Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled Struct 85:341–349

    Article  Google Scholar 

  • Singh VK, Panda SK (2015) Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers. Smart Struct Syst 16(5):853–872

    Article  Google Scholar 

  • Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91(9):6034–6037

    Article  Google Scholar 

  • Wu H, Yang J, Kitipornchai S (2017) Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos Struct 162:244–254

    Article  Google Scholar 

  • Yazdi AA (2013) Applicability of homotopy perturbation method to study the nonlinear vibration of doubly curved cross-ply shells. Compos Struct 96:526–531

    Article  Google Scholar 

  • Yazid M, Heireche H, Tounsi A, Bousahla AA, Houari MSA (2018) A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart Struct Syst 21(1):15–25

    Google Scholar 

  • Youcef DO, Kaci A, Benzair A, Bousahla AA, Tounsi A (2018) Dynamic analysis of nanoscale beams including surface stress effects. Smart Struct Syst 21(1):65–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa karimiasl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Transformed shell principle coordinate can be expressed by:

$$ \begin{aligned} \bar{Q}_{{11}}^{n} &= Q_{{11}}^{n} cos^{4} \theta + 2\left( {Q_{{12}}^{n} + 2Q_{{66}}^{n} } \right)sin^{2} \theta cos^{2} \theta + Q_{{22}}^{n} sin^{4} \theta \hfill \\ \bar{Q}_{{12}}^{n} &= (Q_{{11}}^{n} + Q_{{22}}^{n} - 4Q_{{66}}^{n} )sin^{2} \theta cos^{2} \theta + Q_{{12}}^{n} (sin^{4} \theta + cos^{4} \theta ) \hfill \\ \bar{Q}_{{22}}^{n} &= Q_{{11}}^{n} sin^{4} \theta + 2(Q_{{12}}^{n} + 2Q_{{66}}^{n} )sin^{2} \theta cos^{2} \theta + Q_{{22}}^{n} cos^{4} \theta \hfill \\ \bar{Q}_{{66}}^{n} &= (Q_{{11}}^{n} + Q_{{22}}^{n} - 2Q_{{12}}^{n} - 2Q_{{66}}^{n} )sin^{2} \theta cos^{2} \theta + Q_{{66}}^{n} (sin^{4} \theta + cos^{4} \theta ) \hfill \\ \bar{Q}_{{44}}^{n} &= Q_{{44}}^{n} cos^{2} \theta + Q_{{55}}^{n} sin^{2} \theta \hfill \\ \end{aligned} $$
(74)

where \( {\overline{Q}}_{ij} \left(i,j=\text{1,2},\text{3,4},\text{5,6}\right)\) presented the transformed reduce stiffness modulus.

Motions equations of multiscale composite shell can be expressed in terms of u, v, w, \( {\phi }_{x}, {\phi }_{y}\) displacements are obtained by substituting Eqs. (19a19c) into (33a33d) yields:

$$ \begin{aligned} & A_{{11}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) + A_{{12}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + A_{{16}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }} + \frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) + B_{{11}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }}} \right) + B_{{12}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) \\ & \quad + B_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial y^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) - s_{1} E_{{11}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial y^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }}} \right) \\ & \quad - s_{1} E_{{12}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} E_{{16}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + 2\frac{{\partial ^{3} w_{0} }}{{\partial x^{2} \partial y}} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + A_{{16}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + A_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + A_{{66}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + B_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}}} \right) + B_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }}} \right) \\ & \quad + B_{{66}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{x} }}{{\partial y^{2} }}} \right) - s_{1} E_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial y\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} E_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }}} \right) \\ & \quad - s_{1} E_{{66}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + 2\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + \frac{1}{{R_{1} }}\left[ {\hat{A}_{{45}} \left( {\phi _{y} + \frac{{\partial w_{0} }}{{\partial y}} - \frac{{v_{0} }}{{R_{2} }}} \right) + \hat{A}_{{55}} \left( {\phi _{x} + \frac{{\partial w_{0} }}{{\partial x}} - \frac{{u_{0} }}{{R_{1} }}} \right)} \right]\\ & \quad + \frac{{s_{1} }}{{R_{1} }}\left[ {E_{{11}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + E_{{12}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right)} \right. \\ & \quad + E_{{11}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + E_{{16}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + F_{{11}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }}} \right) + F_{{12}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) + F16\left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} H_{{11}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }}} \right) - s_{1} H_{{12}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} H_{{16}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }} + \frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + 2\frac{{\partial ^{3} w_{0} }}{{\partial y\partial x^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + E_{{16}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) + E_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + E_{{66}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + F_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}}} \right) + F_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }}} \right) + F_{{66}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial y^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} H_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} H_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }}} \right) \\ & \quad \left. { - s_{1} H_{{66}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{x} }}{{\partial y^{2} }} + 2\frac{{\partial ^{3} w_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }}} \right)} \right] \\ & \quad = \bar{I}_{0} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial t^{2} }}} \right) - \bar{J}_{1} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial t^{2} }}} \right) + s_{1} \bar{I}_{3} \frac{{\partial ^{2} }}{{\partial t^{2} }}\left( {\frac{{\partial w_{0} }}{{\partial x}}} \right) \\ \end{aligned} $$
(75a)
$$ \begin{aligned} & A_{{11}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + A_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + A_{{66}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x^{2} }} + \frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + B_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }}} \right) \\ & \quad + B_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) + B_{{66}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} E_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }}} \right) - s_{1} E_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} E_{{66}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + 2\frac{{\partial ^{3} w_{0} }}{{\partial x^{2} \partial y}} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + A_{{12}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) + A_{{22}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x^{2} }} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + A_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + B_{{12}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}}} \right) + B_{{22}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }}} \right) \\ & \quad + B_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{x} }}{{\partial y^{2} }}} \right) - s_{1} E_{{12}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial y\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} E_{{22}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }}} \right) \\ & \quad - s_{1} E_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + 2\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + \frac{1}{{R_{2} }}\left[ {\hat{A}_{{45}} \left( {\phi _{y} + \frac{{\partial w_{0} }}{{\partial y}} - \frac{{v_{0} }}{{R_{2} }}} \right) + \hat{A}_{{55}} \left( {\phi _{x} + \frac{{\partial w_{0} }}{{\partial x}} - \frac{{u_{0} }}{{R_{1} }}} \right)} \right] \\ & \quad + \frac{{s_{1} }}{{R_{1} }}\left[ {E_{{12}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right)} \right. + E_{{12}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + E_{{22}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) + E_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) \\ & \quad + F_{{12}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}}} \right) + F_{{22}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }}} \right) + F_{{26}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{y} }}{{\partial \partial y^{2} }}} \right) \\ & \quad - s_{1} H_{{12}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{2} \partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) - s_{1} H_{{22}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x^{2} }}} \right) \\ & \quad - s_{1} H_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{x} }}{{\partial y^{2} }} + 2\frac{{\partial ^{3} w_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + E_{{16}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + E_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + E_{{66}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + F_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }}} \right) + F_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) + F_{{66}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} H_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) - s_{1} H_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }}} \right) \\ & \quad \left. { - s_{1} H_{{66}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + 2\frac{{\partial ^{3} w_{0} }}{{\partial y\partial x^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right)} \right] \\ & \quad = \bar{I}_{0} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial t^{2} }}} \right) - \bar{J}_{1} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial t^{2} }}} \right) + s_{1} \bar{I}_{3} \frac{{\partial ^{2} }}{{\partial t^{2} }}\left( {\frac{{\partial w_{0} }}{{\partial y}}} \right) \\ \end{aligned} $$
(75b)
$$ \begin{aligned} & \hat{A}_{{45}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{2} }}\frac{{\partial v_{0} }}{{\partial x}}} \right) + \hat{A}_{{55}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}} + \frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial u_{0} }}{{\partial x}}} \right) \\ & \quad + \hat{A}_{{44}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial v_{0} }}{{\partial y}}} \right) + \hat{A}_{{45}} \left( {\frac{{\partial \phi _{x} }}{{\partial y}} + \frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{1} }}\frac{{\partial u_{0} }}{{\partial y}}} \right) \\ & \quad + s_{1} \left[ {E_{{11}} \left( {\frac{{\partial ^{3} u_{0} }}{{\partial x^{3} }} + \frac{1}{{R_{1} }}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }}} \right)} \right. \\ & \quad + E_{{12}} \left( {\frac{{\partial ^{3} v_{0} }}{{\partial y\partial x^{2} }} + \frac{1}{{R_{2} }}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{3} w_{0} }}{{\partial x^{2} \partial y}}} \right) \\ & \quad + E_{{16}} \left( {\frac{{\partial ^{3} v_{0} }}{{\partial x^{3} }} + \frac{{\partial ^{3} u_{0} }}{{\partial x^{2} \partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} + \frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{3} w_{0} }}{{\partial x^{2} \partial y}}} \right) \\ & \quad + F_{{11}} \frac{{\partial ^{3} \phi _{x} }}{{\partial x^{3} }} \\ & \quad + F_{{12}} \frac{{\partial ^{3} \phi _{y} }}{{\partial x^{2} \partial y}} + F_{{16}} \left( {\frac{{\partial ^{3} \phi _{y} }}{{\partial x^{3} }} + \frac{{\partial ^{3} \phi _{x} }}{{\partial x^{2} \partial y}}} \right) - s_{1} H_{{11}} \left( {\frac{{\partial ^{3} \phi _{x} }}{{\partial x^{3} }} + \frac{{\partial ^{4} w_{0} }}{{\partial x^{4} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{3} u_{0} }}{{\partial x^{3} }}} \right) \\ & \quad - s_{1} H_{{12}} \left( {\frac{{\partial ^{3} \phi _{y} }}{{\partial x^{2} \partial y}} + \frac{{\partial ^{4} w_{0} }}{{\partial x^{2} \partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{3} v_{0} }}{{\partial y\partial x^{2} }}} \right) \\ & \quad - s_{1} H_{{16}} \left( {\frac{{\partial ^{3} \phi _{y} }}{{\partial x^{3} }} + \frac{{\partial ^{3} \phi _{x} }}{{\partial x\partial y^{2} }} + 2\frac{{\partial ^{4} w_{0} }}{{\partial x^{3} \partial y}} - \frac{1}{{R_{2} }}\frac{{\partial ^{3} v_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{3} u_{0} }}{{\partial x^{2} \partial y}}} \right) \\ & \quad + E_{{12}} \left( {\frac{{\partial ^{3} u_{0} }}{{\partial x\partial y^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}}} \right) \\ & \quad + E_{{22}} \left( {\frac{{\partial ^{3} v_{0} }}{{\partial y^{3} }} + \frac{1}{{R_{2} }}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{3} w_{0} }}{{\partial y^{3} }}} \right) \\ & \quad + E_{{26}} \left( {\frac{{\partial ^{3} v_{0} }}{{\partial x\partial y^{2} }} + \frac{{\partial ^{3} u_{0} }}{{\partial y^{3} }} + \frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{3} w_{0} }}{{\partial y^{3} }}} \right) \\ & \quad + F_{{12}} \frac{{\partial ^{3} \phi _{x} }}{{\partial y^{2} \partial x}} + F_{{22}} \frac{{\partial ^{3} \phi _{y} }}{{\partial y^{3} }} + F_{{26}} \left( {\frac{{\partial ^{3} \phi _{y} }}{{\partial y^{2} \partial x}} + \frac{{\partial ^{3} \phi _{x} }}{{\partial y^{3} }}} \right) \\ & \quad - s_{1} H_{{12}} \left( {\frac{{\partial ^{3} \phi _{x} }}{{\partial y^{2} \partial x}} + \frac{{\partial ^{4} w_{0} }}{{\partial x^{2} \partial y^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{3} v_{0} }}{{\partial x\partial y^{2} }}} \right) \\ & \quad - s_{1} H_{{26}} \left( {\frac{{\partial ^{3} \phi _{y} }}{{\partial x\partial y^{2} }} + \frac{{\partial ^{3} \phi _{x} }}{{\partial y^{3} }} + 2\frac{{\partial ^{4} w_{0} }}{{\partial y^{3} \partial x}} - \frac{1}{{R_{2} }}\frac{{\partial ^{3} v_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{3} u_{0} }}{{\partial y^{3} }}} \right) \\ & \quad + 2E_{{16}} \left( {\frac{{\partial ^{3} u_{0} }}{{\partial y\partial x^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}}} \right) \\ & \quad + 2E_{{66}} \left( {\frac{{\partial ^{3} v_{0} }}{{\partial y\partial x^{2} }} + \frac{{\partial ^{3} u_{0} }}{{\partial y^{2} \partial x}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}} + \frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}}} \right) \\ & \quad + 2F_{{16}} \left( {\frac{{\partial ^{3} \phi _{x} }}{{\partial x^{2} \partial y}}} \right) + 2F_{{66}} \left( {\frac{{\partial ^{3} \phi _{y} }}{{\partial x^{2} \partial y}} + \frac{{\partial ^{3} \phi _{y} }}{{\partial y^{2} \partial x}}} \right) \\ & \quad - 2s_{1} H_{{16}} \left( {\frac{{\partial ^{3} \phi _{x} }}{{\partial x^{2} \partial y}} + \frac{{\partial ^{4} w_{0} }}{{\partial x^{3} \partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{3} u_{0} }}{{\partial y\partial x^{2} }}} \right) - 2s_{1} H_{{26}} \left( {\frac{{\partial ^{3} \phi _{y} }}{{\partial y^{2} \partial x}} + \frac{{\partial ^{4} w_{0} }}{{\partial x\partial y^{3} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{3} v_{0} }}{{\partial x\partial y^{2} }}} \right) \\ & \quad \left. { - 2s_{1} H_{{66}} \left( {\frac{{\partial ^{3} \phi _{y} }}{{\partial y\partial x^{2} }} + \frac{{\partial ^{3} \phi _{x} }}{{\partial x\partial y^{2} }} + 2\frac{{\partial ^{4} w_{0} }}{{\partial y^{2} \partial x^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{3} v_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{3} u_{0} }}{{\partial x\partial y^{2} }}} \right)} \right] \\ \end{aligned} $$
$$ \begin{aligned} & \frac{\partial }{{\partial x}}\left( {\frac{{\partial w_{0} }}{{\partial x}}\left\{ {A_{{11}} \left( {\frac{{\partial u_{0} }}{{\partial x}} + \frac{w}{{R_{2} }} + \frac{1}{2}\left( {\frac{{\partial w_{0} }}{{\partial x}}} \right)^{2} } \right)} \right.} \right. + A_{{12}} \left( {\frac{{\partial v_{0} }}{{\partial y}} + \frac{w}{{R_{2} }} + \left( {\frac{1}{2}\frac{{\partial w_{0} }}{{\partial y}})^{2} } \right)} \right) \\ & \quad + A_{{16}} \left( {\frac{{\partial v_{0} }}{{\partial x}} + \frac{{\partial u_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial w_{0} }}{{\partial y}}} \right) + B_{{11}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}}} \right) + B_{{12}} \left( {\frac{{\partial \phi _{y} }}{{\partial y}}} \right) \\ & \quad + B_{{16}} \left( {\frac{{\partial \phi _{y} }}{{\partial x}} + \frac{{\partial \phi _{x} }}{{\partial y}}} \right) - s_{1} E_{{16}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}} + \frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial u_{0} }}{{\partial x}}} \right) \\ & \quad - s_{1} E_{{26}} \left( {\frac{{\partial \phi _{y} }}{{\partial y}} + \frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial v_{0} }}{{\partial y}}} \right) \\ & \quad \left. { - s_{1} E_{{66}} \left( {\frac{{\partial \phi _{y} }}{{\partial x}} + \frac{{\partial \phi _{x} }}{{\partial y}} + 2\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{2} }}\frac{{\partial u_{0} }}{{\partial y}} - \frac{1}{{R_{2} }}\frac{{\partial u_{0} }}{{\partial y}}} \right)} \right\} \\ & \quad + \frac{\partial }{{\partial y}}\left( {\frac{{\partial w_{0} }}{{\partial x}}\left\{ {A_{{16}} \left( {\frac{{\partial u_{0} }}{{\partial x}} + \frac{w}{{R_{1} }} + \frac{1}{2}\left( {\frac{{\partial w_{0} }}{{\partial x}}^{2} } \right)} \right) + A_{{26}} \left( {\frac{{\partial v_{0} }}{{\partial y}} + \frac{w}{{R_{2} }} + \frac{1}{2}\left( {\frac{{\partial w_{0} }}{{\partial y}}} \right)^{2} } \right)} \right.} \right. \\ & \quad + A_{{66}} \left( {\frac{{\partial v_{0} }}{{\partial x}} + \frac{{\partial u_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial w_{0} }}{{\partial y}}} \right) + B_{{16}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}}} \right) + B_{{26}} \left( {\frac{{\partial \phi _{y} }}{{\partial y}}} \right) \\ & \quad + B_{{66}} \left( {\frac{{\partial \phi _{y} }}{{\partial x}} + \frac{{\partial \phi _{x} }}{{\partial y}}} \right) - s_{1} E_{{16}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}} + \frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial u_{0} }}{{\partial x}}} \right) \\ & \quad - s_{1} E_{{26}} \left( {\frac{{\partial \phi _{y} }}{{\partial y}} + \frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial v_{0} }}{{\partial y}}} \right)\left. { - s_{1} E_{{66}} \left( {\frac{{\partial \phi _{y} }}{{\partial x}} + 2\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial \phi _{x} }}{{\partial y}}} \right)} \right\} \\ & \frac{\partial }{{\partial x}}\left( {\frac{{\partial w_{0} }}{{\partial y}}\left\{ {A_{{12}} \left( {\frac{{\partial u_{0} }}{{\partial x}} + \frac{w}{{R_{1} }} + \frac{1}{2}\left( {\frac{{\partial w_{0} }}{{\partial x}}} \right)^{2} } \right) + A_{{22}} \left( {\frac{{\partial v_{0} }}{{\partial y}} + \frac{w}{{R_{2} }} + \frac{1}{2}\left( {\frac{{\partial w_{0} }}{{\partial y}}} \right)^{2} } \right)} \right.} \right. \\ & \quad + A_{{26}} \left( {\frac{{\partial v_{0} }}{{\partial x}} + \frac{{\partial u_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial w_{0} }}{{\partial y}}} \right) + B_{{12}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}}} \right) + B_{{22}} \left( {\frac{{\partial \phi _{y} }}{{\partial y}}} \right) + B_{{26}} \left( {\frac{{\partial \phi _{y} }}{{\partial x}} + \frac{{\partial \phi _{x} }}{{\partial y}}} \right) \\ & \quad - s_{1} E_{{12}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}} + \frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial u_{0} }}{{\partial x}}} \right) - s_{1} E_{{22}} \left( {\frac{{\partial \phi _{y} }}{{\partial y}} + \frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial v_{0} }}{{\partial y}}} \right) \\ & \quad - s_{1} E_{{16}} \left( {\frac{{\partial \phi _{y} }}{{\partial x}} + \frac{{\partial \phi _{x} }}{{\partial y}} + 2\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{2} }}\frac{{\partial u_{0} }}{{\partial y}} - \frac{1}{{R_{2} }}\frac{{\partial u_{0} }}{{\partial y}}} \right) \\ & \quad - \frac{1}{{R_{2} }}\left\{ {A_{{12}} \left( {\frac{{\partial u_{0} }}{{\partial x}} + \frac{w}{{R_{1} }} + \frac{1}{2}\left( {\frac{{\partial w_{0} }}{{\partial x}}} \right)^{2} } \right) + A_{{22}} \left( {\frac{{\partial v_{0} }}{{\partial y}} + \frac{w}{{R_{2} }} + \frac{1}{2}\left( {\frac{{\partial w_{0} }}{{\partial y}}} \right)^{2} } \right)} \right. \\ & \quad + A_{{26}} \left( {\frac{{\partial v_{0} }}{{\partial y}} + \frac{{\partial u_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial w_{0} }}{{\partial y}}} \right) + B_{{12}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}}} \right) + B_{{22}} \left( {\frac{{\partial \phi _{y} }}{{\partial y}}} \right) + B_{{26}} \left( {\frac{{\partial \phi _{y} }}{{\partial x}} + \frac{{\partial \phi _{x} }}{{\partial y}}} \right) \\ & \quad - s_{1} E_{{12}} \left( {\frac{{\partial \phi _{x} }}{{\partial x}} + \frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial u_{0} }}{{\partial x}}} \right) - s_{1} E_{{22}} \left( {\frac{{\partial \phi _{y} }}{{\partial y}} + \frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial v_{0} }}{{\partial y}}} \right) \\ & \quad \left. { - s_{1} E_{{26}} \left( {\frac{{\partial \phi _{y} }}{{\partial x}} + \frac{{\partial \phi _{x} }}{{\partial y}} + 2\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{2} }}\frac{{\partial u_{0} }}{{\partial y}} - \frac{1}{{R_{2} }}\frac{{\partial u_{0} }}{{\partial y}}} \right)} \right\} + q^{{hyg}} \\ & \quad = \bar{I}_{0} \left( {\frac{{\partial ^{2} w_{0} }}{{\partial t^{2} }}} \right) + s_{1}^{2} \bar{I}_{6} \frac{{\partial ^{2} }}{{\partial t^{2} }}\left( {\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }} + \frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) + s_{1} \left[ {\bar{I}_{3} \frac{{\partial ^{2} }}{{\partial t^{2} }}\left( {\frac{{\partial u_{0} }}{{\partial x}} + \frac{{\partial v_{0} }}{{\partial y}}} \right)} \right] \\ & \quad - \bar{J}_{4} \frac{{\partial ^{2} }}{{\partial t^{2} }}\left( {\frac{{\partial \phi _{y} }}{{\partial x}} + \frac{{\partial \phi _{x} }}{{\partial y}}} \right) \\ \end{aligned} $$
(75c)
$$ \begin{aligned} & \hat{B}_{{11}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + \hat{B}_{{12}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + \hat{B}_{{16}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x^{2} }} + \frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + \hat{D}_{{11}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }}} \right) \\ & \quad + \hat{D}_{{12}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) + \hat{B}_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} \hat{F}_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial y^{3} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }}} \right) \\ & \quad - s_{1} \hat{F}_{{16}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial y\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} \hat{F}_{{66}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial y^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + 2\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + \hat{B}_{{66}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + \hat{B}_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) \\ & \quad + \hat{D}_{{16}} \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \hat{D}_{{26}} \frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }} + \hat{D}_{{66}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }}} \right) \\ & \quad - s_{1} \hat{F}_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial y\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} \hat{F}_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial y^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial y^{2} }}} \right) \\ & \quad - s_{1} \hat{F}_{{66}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + 2\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }}} \right) \\ & \quad - \hat{A}_{{45}} \left( {\phi _{y} + \frac{{\partial w_{0} }}{{\partial y}} - \frac{{v_{0} }}{{R_{2} }}} \right) - \hat{A}_{{55}} \left( {\phi _{x} + \frac{{\partial w_{0} }}{{\partial x}} - \frac{{u_{0} }}{{R_{1} }}} \right) \\ & \quad = \bar{J}_{1} \frac{{\partial ^{2} u_{0} }}{{\partial t^{2} }} + \bar{K}_{2} \frac{{\partial ^{2} \phi _{x} }}{{\partial t^{2} }} - s_{1} \bar{J}_{4} \frac{{\partial ^{2} }}{{\partial t^{2} }}\left( {\frac{{\partial w_{0} }}{{\partial x}}} \right) \\ \end{aligned} $$
(75d)
$$ \begin{aligned} & \hat{B}_{{16}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + \hat{B}_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{2} }}\frac{{\partial w_{0} }}{{\partial x}} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + \hat{B}_{{66}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x^{2} }} + \frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x^{2} }}} \right) + \hat{D}_{{16}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }}} \right) \\ & \quad + \hat{D}_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) + \hat{D}_{{66}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} \hat{F}_{{16}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x^{2} }} + \frac{{\partial ^{3} w_{0} }}{{\partial x^{3} }} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }}} \right) \\ & \quad - s_{1} \hat{F}_{{26}} \left( {\frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + \frac{{\partial ^{3} w_{0} }}{{\partial x\partial y^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}}} \right) \\ & \quad - s_{1} \hat{F}_{{66}} \left( {\frac{{\partial ^{2} \phi _{x} }}{{\partial x^{2} }} + \frac{{\partial ^{2} \phi _{y} }}{{\partial x\partial y}} + 2\frac{{\partial ^{3} w_{0} }}{{\partial y^{2} \partial x}} - \frac{1}{{R_{2} }}\frac{{\partial ^{2} u_{0} }}{{\partial x^{2} }} - \frac{1}{{R_{1} }}\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + \hat{B}_{{22}} \left( {\frac{{\partial ^{2} u_{0} }}{{\partial x\partial y}} + \frac{1}{{R_{1} }}\frac{{\partial w_{0} }}{{\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}}} \right) \\ & \quad + \hat{B}_{{26}} \left( {\frac{{\partial ^{2} v_{0} }}{{\partial x\partial y}} + \frac{{\partial ^{2} u_{0} }}{{\partial y^{2} }} + \frac{{\partial w_{0} }}{{\partial y}}\frac{{\partial ^{2} w_{0} }}{{\partial x\partial y}} + \frac{{\partial w_{0} }}{{\partial x}}\frac{{\partial ^{2} w_{0} }}{{\partial y^{2} }}} \right) \\ \end{aligned} $$
(75e)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

karimiasl, M. Chaotic dynamics of a non-autonomous nonlinear system for a smart composite shell subjected to the hygro-thermal environment. Microsyst Technol 25, 2587–2607 (2019). https://doi.org/10.1007/s00542-018-4206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4206-6

Navigation