Advertisement

Optimization of laser writer-based UV lithography with high magnification optics to pattern X-ray lithography mask templates

  • S. Achenbach
  • S. Hengsbach
  • J. Schulz
  • J. Mohr
Technical Paper
  • 34 Downloads

Abstract

Deep X-ray lithography is a preferred fabrication approach for those micro devices that depend on smooth and vertical sidewalls of comparatively deep structures rather than extreme lateral resolution. The structure quality obtained depends on, and is limited by, the quality of the X-ray mask applied. A critical component of the mask is its absorber patterns. They get fabricated by electroplating into voids of a polymer template. These templates must usually be at least 3 μm deep and exhibit smooth and vertical sidewalls with a lateral resolution of micrometers and possibly below. Primary patterning of the templates is very demanding. Best results are obtained when dedicated electron beam writers with acceleration voltages of 100 kV and above are applied. This, however, limits access to patterning infrastructure and substantially drives delivery timeline and cost, making mask absorber template patterning a bottleneck of the entire process sequence. We propose, evaluate and optimize an alternative absorber patterning approach based on direct laser writing. An ultraviolet laser with 355 nm wavelength and 250 mW beam power by Heidelberg Instruments is applied to expose 2.9 μm thick, chemically amplified, high contrast, negative tone resist mrx-5. Exposure parameters analyzed include the dose and focal settings. Experiments are carried out on bare silicon wafers as well as on chrome-gold and on titanium oxide plating bases. For all cases, results with and without an additional antireflective coating of 200 nm AZ BAR-Li are studied. Aspects of the resist template structure quality analyzed include the sidewall verticality and its smoothness and defects, resist adhesion to the substrate, minimum feature size and structure accuracy, as well as irregularities due to stitching of partial layouts. In an optimized process, a dose of 14 mW on oxidized titanium and BAR-Li was used. We were able to demonstrate 1.5 μm minimum feature size of isolated structures and structural details of about 1 μm. The sidewalls are vertical and exhibit a roughness of dozens of nanometers. When an antireflective coating is used, chamfers are observed at the resist bottom. The structure accuracy occasionally deviates from the original layout by 200–300 nm, particularly at stitching singularities or towards the end of resist walls. The described absorber template patterning process delivers a resolution that much extends beyond previous UV patterning approaches. The structure accuracy, however, is inferior to electron beam written samples. Given the cost and timeline benefit, results of the study will allow users to identify which primary patterning approach is best suited for their micro devices.

Notes

Acknowledgements

This work was partly carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, http://www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, http://www.kit.edu). Research described in this paper was partly supported by the Karlsruhe Institute of Technology (KIT, http://www.kit.edu). This paper is based on contributions from the Karlsruhe Institute of Technology, Institute of Microstructure Technology, and from the Canadian Light Source, Synchrotron Laboratory for Micro and Nano Devices.

References

  1. Achenbach S (1996) Genauigkeitsbegrenzende Effekte bei der Übertragung von Mikrostrukturen in große Resistdicken mittels Röntgentiefenlithographie mit Synchrotronstrahlung. Dissertation (in German), University of Karlsruhe, Karlsruhe, GermanyGoogle Scholar
  2. Achenbach S, Börner M, Kinuta S, Bacher W, Mohr J, Saile V, Saotome Y (2007) Structure quality in deep XRL applying commercial polyimide-based masks. Microsyst Technol 13(3–4):349–354Google Scholar
  3. Becker EW, Ehrfeld W, Hagmann P, Maner A, Münchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron Eng 4(1):36–56CrossRefGoogle Scholar
  4. Desta Y, Göttert J (2009) X-ray masks for LIGA microfabrication. Advanced micro and nanosystems, vol 7. LIGA and its applications. Wiley VCH, Weinheim, pp 11–50. ISBN 978-3-527-31698-4Google Scholar
  5. Klymyshyn D, Börner M, Haluzan D, Gono Santosa E, Schaffer M, Achenbach S, Mohr J (2010) Vertical high-Q RF-MEMS devices for reactive lumped element circuits. IEEE Trans Microw Theory Tech 58(11):2976–2986CrossRefGoogle Scholar
  6. Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7:121–124CrossRefGoogle Scholar
  7. Meyer P, Saile V, Schulz J, Klein O, Arendt M (2008) Launching into a golden age: gears (mm parts) made by the deep X-ray LIG(A) process. Int J Technol Transfer Commer 7(4):1–9Google Scholar
  8. Mohr J, Göttert J, Müller A, Ruther P, Wengeling K (1997) Micro-optical and opto-mechanical systems fabricated by the LIGA technique. Proc SPIE Int Soc Opt Eng 3008:273–278Google Scholar
  9. Reichmanis E, Houlihan FM, Nalamasu O, Neenan TX (1994) Chemically amplified resists: chemistry and processes. Adv Func Mater 4(2):83–93Google Scholar
  10. Scheunemann HU, Loechel B, Jian L, Schondelmaier D, Desta Y, Göttert J (2003) Cost effective masks for deep X-ray lithography. Proc SPIE Int Soc Opt Eng 5116:775–781Google Scholar
  11. Schomburg WK, Baving H, Bley P (1991) Ti- and Be- X-ray masks with alignment windows for the LIGA process. Microelectron Eng 13:323–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT)Eggenstein-LeopoldshafenGermany
  3. 3.Karlsruhe Nano Micro Facility (KNMF)Eggenstein-LeopoldshafenGermany
  4. 4.Microworks GmbHKarlsruheGermany

Personalised recommendations