Microsystem Technologies

, Volume 25, Issue 3, pp 997–1016 | Cite as

Resonance patterns in cantilevered plates with micro electromechanical systems (MEMS) applications

  • M. A. Mahmoud
  • Mosab A. Alrahmani
  • Hameed A. Alawadi
Technical Paper


Detailed maps of the resonance patterns of cantilever plates highlighting width and Poisson’s ratio effects are presented. At present, this is lacking in the literature for higher bending and for torsional modes. Ranges of curve crossing and curve veering are identified and their potential effects on micro electro-mechanical systems (MEMS) applications are discussed. Results for three common materials are included. Closed form expressions are presented that could predict three plate resonance types: beam-like, symmetric and anti symmetric (torsional). It is also shown that some torsional vibration formulas used in the literature are inaccurate for wide cantilevers. Although the focus of the discussion is on MEMS, the results are applicable to both macro and micro plates of dimensions greater than 100 nm. This is because the analysis was carried out using continuum-based three dimensional finite elements.



  1. Anderson RG, Irons BM, Zienkiewicz OC (1968) vibration and stability of plates using finite elements. Int J Solids Struct 4:1031–1055CrossRefGoogle Scholar
  2. Austin RN, Caughpield DA, Plass HJ Jr (1963) Application of Reissner’s variational principle to the vibration analysis of square flat plates with various root support conditions. Dev Theoretical Appl Mech 1:1–24Google Scholar
  3. Leissa AW (1969) Vibration of plates, NASA-SP-160, Scientific and Technical Information Division, National Aeronautics And Space Administration, Washington, D.C.Google Scholar
  4. Barton MV (1951) Vibration of rectangular and skew cantilever plates. J Appl Mech 18:129–134Google Scholar
  5. Beardslee LA, Addous AM, Heinrich S, Josse F, Dufour I, Brand O (2010) Thermal excitation and piezoresistive detection of cantilever in-plane resonance modes for sensing applications. J Microelectromech Syst 19:1015–1017CrossRefGoogle Scholar
  6. Bhat BB (2000) Curve veering: inherent behaviour of some vibrating systems. Shock Vib 7:241–249CrossRefGoogle Scholar
  7. Cain RG, Biggs S, Page NW (2000) Force calibration in lateral force microscopy. J Colloid Interface Sci 227:55–65CrossRefGoogle Scholar
  8. Dawe DJ (1965) A finite element approach to plate vibration problems. Mechanical Eng Sci 7:28–32CrossRefGoogle Scholar
  9. Dekkers M, Boschker H, vanZalk M, Nguyen M, Nazeer H, Houwman E, Rijnders G (2013) The significance of the piezoelectric coefficient d31, eff determined from cantilever structures. J Micromech Microeng 23:025008CrossRefGoogle Scholar
  10. DeVoe DL, Pisano AP (1997) Modeling and optimal design of piezoelectric cantilever microactuators. J of Microelectromech Syst 6:266–270CrossRefGoogle Scholar
  11. Beres DP, Bailey CD (1975) Vibration of skewed cantilever plates and helicoidal shells, NASA CR-2588Google Scholar
  12. Reissner E, Stein M (1951) Torsion and transverse bending of cantilever plates, N.A.C.A. Technical Note 236, National Advisory Committee for Aeronautics. Langley Aeronautical Lab, Langley Field, VA, United StatesGoogle Scholar
  13. Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological chemical detection: nanomechanics principles. Phys Rep 503:115–163CrossRefGoogle Scholar
  14. Forchheimer D, Borysov SS, Platz D, Haviland DB (2014) Determining surface properties with bimodal and multimodal AFM. Nanotechnology 25:48570CrossRefGoogle Scholar
  15. Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7:217–226CrossRefGoogle Scholar
  16. Giannini O, Sestieri A (2016) Experimental characterization of veering crossing and lock-in in simple mechanical systems. Mech Syst Signal Proc 72–73:846–864CrossRefGoogle Scholar
  17. Gorman DJ (1976) Free vibration analysis of cantilever plates by the method of superposition. J Sound Vib 49:453–467CrossRefzbMATHGoogle Scholar
  18. Reynen GP (2012) Leveraging eigenvalue veering for improved sensing with microelectromechanical systems, Ph. D. thesis, The University of British Columbia, Vancouver, CanadaGoogle Scholar
  19. Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Normal and torsional spring constants of atomic force microscope cantilevers. Rev Sci Instrum 75:1988–1996CrossRefGoogle Scholar
  20. Grinsted B (1952) Nodal pattern analysis. Proc Inst Mech Eng ser A 166:309–326CrossRefGoogle Scholar
  21. Gruter RR, Yang JL, Khan Z, Drechsler U, Paxman R, Despont M, Ndieyira JW, McKendry RA, Dueck B, Bircher BA, Hoogenboom BW (2010) Disentangling mechanical and mass effects on nanomechanical resonators. Appl Phys Lett 96:023113CrossRefGoogle Scholar
  22. Hsu Tai-Ran (2008) MEMS and microsystems: design, manufacture, and nanoscale engineering, 2nd edn. Wiley, Hoboken (Chapter 7: Materials, for MEMS and Microsystems). ISBN: 9780470083017Google Scholar
  23. Saliba HT (1982) Free vibration analysis of rectangular cantilever plates with symmetrically distributed point supports, M.A. Sc. Thesis, University of Ottawa, CanadaGoogle Scholar
  24. Hwang I-S, Yang Ch-W, Su P-H, Wu E-T, Liao H-Sh (2013) Imaging soft matters in water with torsional mode atomic force microscopy. Ultramicroscopy 135:121–125CrossRefGoogle Scholar
  25. Hay J (2009) Quantitative mechanical measurements at the nano-scale using the DCM II, Application note, Agilent technologies. Accessed June 2018
  26. Jesse S, Kalinin SV, Proksch R, Baddorf AP, Rodriguez BJ (2007) The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18:435503CrossRefGoogle Scholar
  27. du Bois JL, Adhikari S, Lieven NAJ, Experimental and numerical investigation of mode veering in a stressed structure. In: IMAC XXV: Conference & exposition on structural dynamics—celebrating 25 Years of IMAC, 2007-02-12–2007-02-22Google Scholar
  28. duBois JL, Adhikari S, Lieven NAJ (2009) Eigenvalue curve veering in stressed structures: an experimental study. J Sound Vib 322:1117–1124CrossRefGoogle Scholar
  29. duBois JL, Adhikari S, Lieven NAJ (2011) On the quantification of eigenvalue curve veering a veering index. J Appl Mech 78:041007CrossRefGoogle Scholar
  30. Johnson BN, Mutharasan R (2011) Persistence of bending and torsional modes in piezoelectric-excited millimeter-sized cantilever (PEMC) sensors in viscous liquids—1 to 103 cP. J Appl Phys 109:066105CrossRefGoogle Scholar
  31. Johnson BN, Mutharasan R (2012) Biosensing using dynamic-mode cantilever sensors: a review. Biosens Bioelectron 32:1–18CrossRefGoogle Scholar
  32. Johnson BN, Sharma H, Mutharasan R (2013) Torsional and lateral resonant modes of cantilevers as biosensors: alternatives to bending modes. Anal Chem 85:1760–1766CrossRefGoogle Scholar
  33. Kausel E, Malischewsky P, Barbosa J (2015) Osculations of spectral lines in a layered medium. Wave Motion 56:22–42CrossRefGoogle Scholar
  34. Kuttler JR, Sigillito VG (1981) Letter to editor: on curve veering. J Sound Vib 75:585–588CrossRefGoogle Scholar
  35. Lee JH, Yoon KH, Hwang KS, Park J, Ahn S, Kim TS (2004a) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens Bioelectron 20:269–275CrossRefGoogle Scholar
  36. Lee JH, Yoon KH, Hwang KS, Park J, Ahn S, Kim TS (2004b) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens Bioelectron 20:269–275CrossRefGoogle Scholar
  37. Leissa A (1973) The free vibration of rectangular plates. J Sound Vib 31:257–293CrossRefzbMATHGoogle Scholar
  38. Leissa A (1974) On a curve veering aberration. J Appl Math Phys (ZAMP) 25:99–111CrossRefzbMATHGoogle Scholar
  39. Li WL, Zhang X, Du J, Liu Z (2009) An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports. J Sound Vib 321:254–269CrossRefGoogle Scholar
  40. Liu WH, Chen WC (1992) Vibration analysis of skew cantilever plates with stiffeners. J Sound Vib 159:1–11CrossRefzbMATHGoogle Scholar
  41. Looker JR, Sader JE (2008) Flexural resonant frequencies of thin rectangular cantilever plates. J Appl Mech 75:011007CrossRefGoogle Scholar
  42. Mahmoud MA (2016) Validity and accuracy of resonance shift prediction formulas for microcantilevers: a review and comparative study. Crit Rev Solid State Mater Sci 41:386–429CrossRefGoogle Scholar
  43. McCarthy EK, Bellew AT, Sader JE, Boland JJ (2014) Poisson’s ratio of individual metal nanowires. Nat Commun 5:4336. CrossRefGoogle Scholar
  44. Miller DC, Herrmann CF, Maier HJ, George SM, Stoldt CR, Gall K (2007) Thermo-mechanical evolution of multilayer thin films: part I. Mechanical behavior of Au/Cr/Si microcantilevers. Thin Solid Films 515:3208–3223CrossRefGoogle Scholar
  45. Olkhovets A, Evoy S, Carr DW, Parpia JM, Craighead HG (2000) Actuation and internal friction of torsional nanomechanical silicon resonators. J Vac Sci Technol 18:3549–3551CrossRefGoogle Scholar
  46. Park HS, Cai W, Espinosa HD, Huang H (2009) Mechanics of crystalline nanowires. MRS Bull 34:178–183CrossRefGoogle Scholar
  47. Perkins NC, Mote CD Jr (1986) Comments on curve veering in eigenvalue problems. J Sound Vib 106:451–463CrossRefGoogle Scholar
  48. Petyt M, Fleischer CC (1971) Free vibration of a curved beam. J Sound Vib 18:17–30CrossRefzbMATHGoogle Scholar
  49. Pierre C (1988) Mode localization and eigenvalue loci veering phenomena in disordered structures. J Sound Vib 126:485–502CrossRefGoogle Scholar
  50. Platz D, Forchheimer D, Tholén EA, Haviland DB (2013) Interpreting motion and force for narrow-band intermodulation atomic force microscopy. Beilstein J Nanotechnol 4:45–56CrossRefGoogle Scholar
  51. Plunkett R (1963) Natural frequencies of uniform and non-uniform rectangular cantilever plates. J Mech Eng Sci 5:146–156CrossRefGoogle Scholar
  52. Yahiaoui RA, Bosseboeuf A, Cantilever microbeams: Modelling of the dynamical behaviour and material characterization, 5th. Int. conf on thermal and mechanical simulation and experiments in micro-electronics and micro-systems, EuroSimE2004 (2004) 377-384.
  53. Rajalingham C, Bhat RB, Xistris GD (1996) Closed form approximation of vibration modes of rectangular cantilever plates by the variational reduction method. J Sound Vib 197:263–281CrossRefGoogle Scholar
  54. Raman A, Trigueros S, Cartagena A, Stevenson APZ, Susilo M, Nauman E, Contera SA (2011) Mapping nanomechanical properties of live cells using multiharmonic atomic force microscopy. Nat Nanotechnol 6:809–814CrossRefGoogle Scholar
  55. Reddy VM, Kumar GVS (2013) Design and analysis of microcantilevers with various shapes using COMSOL Multiphysics software. Int J Emerg Technol Adv Eng 3:294–299Google Scholar
  56. Reinstaedtler M, Rabe U, Scherer V, Turner JA, Arnold W (2003) Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry. Surf Sci 532–535:1152–1158CrossRefGoogle Scholar
  57. Rossi RE, Laura PAA (1996) Symmetric and antisymmetric normal modes of a cantilever rectangular plate: effect of Poisson’s ratio and a concentrated mass. J Sound Vib 195:142–148CrossRefGoogle Scholar
  58. Claassen RW, Thorne CJ (1962) Vibrations of a rectangular cantilever plate, Technical report (U.S. Naval Pacific Missile Test Center), Defense Technical Information CenterGoogle Scholar
  59. Morshed S, Prorok BC (2006) Enhancing the mass sensitivity of microcantilever sensors for application in liquid mediums, SEM annual conference & exposition on experimental and applied mechanics. Accessed June 2018
  60. Sakiyama T, Huang M (1998) free vibration analysis of rectangular plates with variable thickness. J Sound Vib 216:379–397CrossRefGoogle Scholar
  61. Serre C, Perez-Rodriguez A, Morante JR, Gorostiza P, Esteve J (1999) Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope. Sens Actuators 74:134–138CrossRefGoogle Scholar
  62. Solares SD, Chawla G (2010) Triple-frequency intermittent contact atomic force microscopy characterization: simultaneous topographical, phase, and frequency shift contrast in ambient air. J Appl Phys 108:054901CrossRefGoogle Scholar
  63. Song Y, Bhushan B (2008) Atomic force microscopy dynamic modes: modeling and applications. J Phys 20:225012Google Scholar
  64. Timoshenko S, Goodier JN (1951) theory of elasticity, 2nd edn. McGraw-Hill, New YorkzbMATHGoogle Scholar
  65. Tse FS, Morse IE, Hinkle RT (1978) Mechanical vibrations: theory and applications, 2nd edn. Allyn and Bacon, Boston, Mass, USAGoogle Scholar
  66. Pamula VK, Jog A, Fair RB (2001) Mechanical property measurement of thin film gold using thermally actuated bimetallic cantilever beams, Nanotech 2001. Tech Proc 2001 Int Conf Modeling Simul Microsyst 1:410–413Google Scholar
  67. Webster JJ (1968) Free vibrations of rectangular curved panels. Int J Mech Sci 10:571–582CrossRefzbMATHGoogle Scholar
  68. Xia X, Li X (2008) Resonance-mode effect on microcantilever mass-sensing performance in air. Rev Sci Instrum 79:074301CrossRefGoogle Scholar
  69. Xia X, Zhang Z, Li X (2008) A latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing. J Micromech Microeng 18:035028CrossRefGoogle Scholar
  70. Xie H, Vitard J, Haliyo S, Regnier S (2008) Enhanced sensitivity of mass detection using the first torsional mode of microcantilevers. Meas Sci Technol 19:055207CrossRefGoogle Scholar
  71. Yadav DPS, Sharma AK, Shivhare V (2015) Free vibration analysis of isotropic plate with stiffeners using finite element method. Eng Solid Mech 3:167–176CrossRefGoogle Scholar
  72. Yang C-W, Hwang I-S (2010) Soft-contact imaging in liquid with frequency-modulation torsion resonance mode atomic force microscopy. Nanotechnology 21:065710CrossRefGoogle Scholar
  73. Young D (1950) Vibration of rectangular plates by the Ritz method. J Appl Mech 17:448–453zbMATHGoogle Scholar
  74. Yurtsever A, Gigler AM, Stark RW (2008) Frequency modulated torsional resonance mode atomic force microscopy on polymers. J Phys 100:052033Google Scholar
  75. Zhong Y, Zhao X-F, Li R (2013) Free vibration analysis of rectangular cantilever plates by finite integral transform method. Int J Comput Methods Eng Sci Mech 14:221–226MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. A. Mahmoud
    • 1
    • 2
  • Mosab A. Alrahmani
    • 2
  • Hameed A. Alawadi
    • 2
  1. 1.Bolton, CTUSA
  2. 2.Department of Mechanical EngineeringCollege of Technological StudiesKuwait CityKuwait

Personalised recommendations