Advertisement

Microsystem Technologies

, Volume 25, Issue 2, pp 447–459 | Cite as

All-optical logic gates based on XPM effect under the PAM-ASK modulation in a symmetric dual NLDC

  • A. C. Ferreira
  • C. S. Sobrinho
  • G. F. Guimarães
  • J. R. R. SousaEmail author
  • J. W. M. Menezes
  • A. Wirth LimaJr.
  • M. L. Lyra
  • A. S. B. Sombra
Technical Paper
  • 117 Downloads

Abstract

We investigate the possibility of achieving all-optical logical gates based in a symmetric double non-linear directional coupler (NLDC) working with pulses of 2 ps coded for the pulse amplitude modulation-amplitude shift keying (PAM-ASK), in a digital keying. The effects of group velocity dispersion, nonlinear self phase modulation and cross phase modulation (XPM) are taken into account in a lossless theoretical setup scheme. We analyze the amplitude and shape of the output pulses as a function of the modulation factor \((|\varepsilon |)\) to show that an OR gate can be readily realizable. Further, we also implement an optical sign phase shift in one of the NLDC input channels after the PAM-ASK modulator. We identify parameter regions on which the logical operations NAND, OR and XOR can be performed with the respective re-configurable scheme set by PAM-ASK modulation technique under the XPM effect.

Notes

Acknowledgements

We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FINEP (Financiadora de Estudos e Projetos), FUNCAP (Fundação Cearense de Amparo a Pesquisa), and FAPEAL (Fundação de Amparo a Pesquisa do estado de Alagoas) for the financial support. Also we thank W.F. de Oliveira for her contributions on the illustrations.

References

  1. Agrawal GP (2001) Applications of nonlinear fiber optics, 1st edn. Academic Press, New YorkGoogle Scholar
  2. Agrawal GP (2002) Nonlinear fiber optics. Academic Press, New YorkzbMATHGoogle Scholar
  3. Agrawal GP (2005) Lightwave technology—telecommunication systems, 1st edn. Wiley, New YorkCrossRefGoogle Scholar
  4. Astar W, Driscoll JB, Liu X, Dadap JI, Green WMJ, Vlasov YA, Carter GM, Osgood RM Jr (2009) Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire. Opt Express 17:12987–12999CrossRefGoogle Scholar
  5. Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal AM, Kimerling LC, Michel J, Willner AE (2015) Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. J Opt Soc Am B 32:26–30CrossRefGoogle Scholar
  6. Bogoni A, Wu X, Bakhtiari Z, Nuccio S, Willner AE (2010) 640 Gbits/s photonic logic gates. Opt Lett 35:3955–3957CrossRefGoogle Scholar
  7. Canabarro AA, Santos B, Gleria I, Lyra ML, Sombra ASB (2010) Interplay of XPM and nonlinear response time in the modulational instability of copropagating optical pulses. J Opt Soc Am B 27:1878–1885CrossRefGoogle Scholar
  8. Cherri AK (2011) All-optical negabinary adders using Mach–Zehnder interferometer. Opt Laser Technol 43:194–203CrossRefGoogle Scholar
  9. Coelho AG Jr, Costa MBC, Ferreira AC, da Silva MG, Lyra ML, Sombra ASB (2013) Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber. J Lightwave Technol 31:731–739CrossRefGoogle Scholar
  10. Downie JD, Hurley J, Zhu X (2009) XPM and SBS nonlinear effects on MLSE with varying uncompensated dispersion. Opt Express 17:22240–22245CrossRefGoogle Scholar
  11. Dutta NK, Wang Q (2006) Semiconductor optical amplifiers. World Scientific, SingaporeCrossRefGoogle Scholar
  12. Fagotto EAM, Abbade MLF (2010) All-optical demultiplexing of 4-ASK optical signals with four-wave mixing optical gates. Opt Commun 283:1102–1109CrossRefGoogle Scholar
  13. Ferreira AC, Sobrinho CS, Menezes JWM, Fraga WB, Rocha HHB, Wirth A, Jr L, Sabóia KDA, Guimarães GF, Filho JMS, Sombra ASB (2009) A performance study of an all-optical logic gate based in PAM-ASK. J Mod Opt 56:1004–1013CrossRefzbMATHGoogle Scholar
  14. Ferreira AC, Costa MBC, Coêlho AG Jr, Sobrinho CS, Lima JLS, Menezes JWM, Lyra ML, Sombra ASB (2012) Analysis of the nonlinear optical switching in a Sagnac interferometer with non-instantaneous Kerr effect. Opt Commun 285:1408–1417CrossRefGoogle Scholar
  15. Ferreira AC, Coêlho AG Jr, Sousa JRR, Sobrinho CS, Magalhães FTCB, Furtado Filho AFG, Guimarães GF, Sales JC, Menezes JWM, Sombra ASB (2016) PAM-ASK optical logic gates in an optical fiber Sagnac interferometer. Opt Laser Technol 77:116–125CrossRefGoogle Scholar
  16. Haus HA, Huang WP (1991) Coupled-mode theory. Proc IEEE 79:1505–1518CrossRefGoogle Scholar
  17. He X, Xie K, Xiang A (2011) Optical solitons switching in asymmetric dual-core nonlinear fiber couplers. Optik 122:1222–1224CrossRefGoogle Scholar
  18. Huang WP (1994) Coupled-mode theory for optical wave-guides—an overwiew. J Opt Soc Am 11:963–983CrossRefGoogle Scholar
  19. Kim JH, Byun YT, Jhon YM, Lee S, Woo DH, Kim SH (2003) All-optical half adder using semiconductor optical amplifier based devices. Opt Commun 218:345–349CrossRefGoogle Scholar
  20. Kim SH, Kim JH, Choi JW, Son CW, Byun YT, Jhon YM, Lee S, Woo DH, Kim SH (2006) All-optical half adder using cross gain modulation in semiconductor optical amplifiers. Opt Express 14:10693–10698CrossRefGoogle Scholar
  21. Kodama T, Wada N, Cincotti G, Kitayama K-I (2014) Tunable optical code converter using XPM and linear-slope pulse streams generated by FBGs. Opt Lett 39:355–358CrossRefGoogle Scholar
  22. Kotb A, Ma S, Chen Z, Dutta NK, Said G (2010) All optical logic NAND gate based on two-photon absorption in semiconductor optical amplifiers. Opt Commun 283:4707–4712CrossRefGoogle Scholar
  23. Li Q, Xie Y, Zhu Y, Qi Y, Zhao Z (2009) Effects of second-order coupling coefficient dispersion on short-pulse propagation and switching in an active two-core nonlinear fiber coupler. J Lightwave Technol 27:2933–2940CrossRefGoogle Scholar
  24. Li F, Vo TD, Husko C, Pelusi M, Xu D-X, Ma R, Janz S, Eggleton BJ, Moss DJ (2012) Silicon nanowire based optical XOR logic gate at 40 Gb/s for DPSK data. In: Conference on lasers and electro-optics (CLEO), IEEE. San Jose, CA, USA, 6–11 May 2012, pp 1–2Google Scholar
  25. Liu H, Ren G, Gao Y, Zhu B, Lian Y, Wu B, Jian S (2016) Ultracompact electro-optical logic gates based on graphene–silica metamaterial. J Nanophotonics 10:026004CrossRefGoogle Scholar
  26. Luís R, Teixeira A, Monteiro P (2007) Design of optical filter for increased efficiency of wavelength converters based on fiber XPM. Opt Commun 271:100–104CrossRefGoogle Scholar
  27. Mahmood T, Cannon BM, Astar W, Carter GM (2014) Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a birefringent nonlinear PCF. Opt Express 22:31774–31785CrossRefGoogle Scholar
  28. Mandal P, Midda S (2011) All optical method of developing OR and NAND logic system based on nonlinear optical fiber couplers. Optik 122:1795–1798CrossRefGoogle Scholar
  29. Marcuse D (1991) Theory of dieletric optical waveguides. Academic Press, San DiegoGoogle Scholar
  30. McIntyre PD, Snyder AW (1973) Power transfer between optical fibers. J Opt Soc Am 63:1518–1527CrossRefGoogle Scholar
  31. Menezes JWM, Fraga WB, Ferreira AC, Guimarães GF, Filho AFGF, Sobrinho CS, Sombra ASB (2010) All-optical half adder using all-optical XOR and AND gates for optical generation of ‘SUM’ and ‘CARRY’. Fiber Integr Opt 29:254–271CrossRefGoogle Scholar
  32. Menezes JWM, Fraga WB, Lima FT, Guimarães GF, Ferreira AC, Lyra ML, Sombra ASB (2011) Study of the performance of an all-optical half adder based on three-core nonlinear directional fiber coupler under delayed and instantaneous nonlinear kerr response. Fiber Integr Opt 30:201–230CrossRefGoogle Scholar
  33. Mestdagh DJG (1995) Fundamentals of multiaccess optical fiber networks. Artech House, NorwoodGoogle Scholar
  34. Nunes A, Zanetti FM, Lyra ML (2016) Switching of transmission resonances in a two-channels coupler: a boundary wall method scattering study. Ann Phys 373:707–716MathSciNetCrossRefzbMATHGoogle Scholar
  35. Oliveira MVN, Coelho AG Jr, Sobrinho CS, Ferreira AC, Sales JC, Sousa JRR, Guimarães GF, Menezes JWM, Lyra ML, Sombra ASB (2017) A new modulation method to generate all-optical logic gates in an AOTF. Microsyst Technol 23(12):5491–5503CrossRefGoogle Scholar
  36. Paltani PP, Medhekar S (2011) All-optical circulator based on cross phase modulation in a nonlinear Mach–Zehnder interferometer. Optik 122:464–466CrossRefGoogle Scholar
  37. Ramaswami R (2002) Optical fiber communication: from transmission to networking. IEEE Commun Mag 40:138–147CrossRefGoogle Scholar
  38. Sabóia KDA, Ferreira AC, Sobrinho CS, Fraga WB, Menezes JWM, Lyra ML, Sombra ASB (2009) Optical cryptography under PPM-PAM modulation based in short optical pulses in an acoustic-optic tunable filter (AOTF). Opt Quantum Electron 41:963–980CrossRefGoogle Scholar
  39. Sales JC, Pessoa TM, Ferreira AC, Correia DG, Sobrinho CS, de Almeida JS, Menezes JWM, Guimarães GF, Sombra ASB (2016) High quality of logic gates from the return arm of a Sagnac fiber interferometer. J Electromagn Waves Appl 30(18):2459–2483CrossRefGoogle Scholar
  40. Sarma AK (2009a) Dark soliton switching in an NLDC in the presence of higher-order perturbative effects. Opt Laser Technol 41:247–250CrossRefGoogle Scholar
  41. Sarma AK (2009b) A comparative study of soliton switching in a two- and three-core coupler with TOD and IMD. Optik 120:390–394CrossRefGoogle Scholar
  42. Sarma AK (2011) Vector soliton switching in a fiber nonlinear directional coupler. Opt Commun 284:186–190CrossRefGoogle Scholar
  43. Schüppert M, Weber C, Bunge C-A, Petermann K (2010) Origins of cross-phase modulation impairments in optical transmission systems without in-line dispersion compensation. J Lightwave Technol 28:2146–2152CrossRefGoogle Scholar
  44. Snyder AW (1972) Coupled-mode theory for optical fibers. J Opt Soc Am 62:1267–1277CrossRefGoogle Scholar
  45. Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and Hall, LondonGoogle Scholar
  46. Sousa JRR, Filho AFGF, Ferreira AC, Batista GS, Sobrinho CS, Bastosa AM, Lyra ML, Sombra ASB (2014) Generation of logic gates based on a photonic crystal fiber Michelson interferometer. Opt Commun 322:143–149CrossRefGoogle Scholar
  47. Trivunac-Vukovic N (2001) Realization of all-optical ultrafast logic gates using triple core asymmetric nonlinear directional coupler. J Opt Commun 22:59–63CrossRefGoogle Scholar
  48. Trivunac-Vukovic N, Milovanovic B (2001) Realization of full set logic gates for all-optical ultrafast switching. In: 5th international conference on telecommunications in modern satellite, cable and broadcasting service, TELSIKS 2001. IEEE, vol 2, pp 500–503Google Scholar
  49. Velanas P, Bogris A, Syvridis D (2009) Operation properties of a reconfigurable photonic logic gate based on cross phase modulation in highly nonlinear fibers. Opt Fiber Technol 15:65–73CrossRefGoogle Scholar
  50. Wang W, Zhang J, Wang Y (2010) Chirp controllable all-optical router in a nonlinear directional coupler. Opt Commun 283:1780–1783CrossRefGoogle Scholar
  51. Wang J, Luo M, Qiu Y, Li X, Gong J, Xu J, Yang Q, Zhang X (2017) Dual-channel AND logic gate based on four-wave mixing in a multimode silicon waveguide. IEEE Photonics J 9(4):7802806Google Scholar
  52. Yabu T, Geshiro M, Kitamura T, Nishida K, Sawa S (2002) All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J Quantum Electron 38:37–46CrossRefGoogle Scholar
  53. Yang CC (1991) All-optical ultrafast logic gates that use asymmetric nonlinear directional couplers. Opt Lett 16:1641–1643CrossRefGoogle Scholar
  54. Yang CC, Wang AJS (1992) Asymmetric nonlinear and its applications to logic functions. IEEE J Quantum Electron 28:479–487CrossRefGoogle Scholar
  55. Zhang X, Wang Y, Sun J, Liu D, Huang D (2004) All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Opt Express 12:361–366CrossRefGoogle Scholar
  56. Zhong X, Xiang A (2007) Cross-phase modulation induced modulation instability in single-mode optical fibers with saturable nonlinearity. Opt Fiber Technol 13:271–279CrossRefGoogle Scholar
  57. Zoiros KE, Papadopoulos G, Houbavlis T, Kanellos GT (2006) Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Opt Commun 258:114–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. C. Ferreira
    • 1
    • 2
    • 3
  • C. S. Sobrinho
    • 2
    • 4
  • G. F. Guimarães
    • 1
    • 2
    • 5
    • 6
  • J. R. R. Sousa
    • 2
    • 3
    Email author
  • J. W. M. Menezes
    • 1
    • 2
    • 5
    • 6
  • A. Wirth LimaJr.
    • 2
  • M. L. Lyra
    • 7
  • A. S. B. Sombra
    • 2
  1. 1.Programa de Pós-Graduação em Engenharia de Telecomunicações do IFCE (PPGET-IFCE), Instituto Federal de EducaçãoCiência e Tecnologia do Ceará, IFCEFortalezaBrazil
  2. 2.Laboratório de Telecomunicações e Ciência e Engenharia de Materiais LOCEM, Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Center of Technological Sciences (CCT), Civil EngineeringUniversity of Fortaleza (UNIFOR)FortalezaBrazil
  4. 4.Departamento de Engenharia de Energias, Instituto de Engenharias e Desenvolvimento SustentávelUniversidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB)RedençãoBrazil
  5. 5.Departamento de TelecomunicaçõesInstituto Federal de Educação, Ciência e Tecnologia do Ceará, IFCEFortalezaBrazil
  6. 6.Laboratório Especialista em Sistemas de Telecomunicações e Ensino, LESTEFortalezaBrazil
  7. 7.Instituto de FísicaUniversidade Federal de AlagoasMaceióBrazil

Personalised recommendations