Microsystem Technologies

, Volume 25, Issue 2, pp 431–440 | Cite as

Ultrafast all-optical ALU operation using a soliton control within the cascaded InGaAsP/InP microring circuits

  • S. Soysouvanh
  • P. Phongsanam
  • S. Mitatha
  • J. Ali
  • P. YupapinEmail author
  • I. S. Amiri
  • K. T. V. Grattan
  • M. Yoshida
Technical Paper


A dark-bright soliton conversion is used to perform the two arithmetic logic unit operations namely adder and subtractor operations. The advantage of the system such as power stability, non-dispersion and the dark-bright soliton phase conversion control can be obtained. The input source into the circuit is the bright soliton pulse, with the pulse width of 35 ps, the peak power at 1.55 µm is 1 mW. By using the dark-bright soliton conversion pair, the generated logic bits can be controlled, and the secure bits can be achieved. The simulation results show the output signal with a minimum loss of only 0.1% with respect to a low input power of 1 mW, and ultra-fast response time of about 1 ps can be achieved. It gives the ultra-high bandwidth of more than 40 Gbits−1. The circuit composes six microring resonators made of InGaAsP/InP material with smaller ring radii of 1.5 µm, and the total physical scale of the circuit less than 100 µm2.



One of the authors (S. Soysouvanh) would like to give an acknowledgement to AUN/SEED-Net for financial support in his Ph.D. program.


  1. Amiri IS, Babakhani S, Vahedi GR, Ali J, Yupapin PP (2012) Dark-bright solitons conversion system for secured and long distance optical communication. IOSR J Appl Phys 2(1):43–48Google Scholar
  2. Amiri IS, Ariannejad MM, Ghasemi M, Ahmad H (2017) Transmission performances of solitons in optical wired link. Appl Comput Inform 13(1):92–99Google Scholar
  3. Chattopadhyay T (2012) Terahertz optical asymmetric demultiplexer (TOAD) based half-adder and using it to design all-optical flip-flop. Optik Int J Light Electron Opt 123:1961–1964Google Scholar
  4. Dai B, Shimizu S, Wang X, Wada N (2013) Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers. IEEE Photonics Technol Lett 25(1):91–93Google Scholar
  5. Donzella V, Sherwali A, Flueckiger J, Grist S, Fard S, Chrostowski L (2015) Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt Express 23:4791–4803Google Scholar
  6. Garai SK (2011) A novel all-optical frequency-encoded method to develop arithmetic and logic unit (ALU) using semiconductor optical amplifiers. Lightwave Technol 29(23):3506–3514Google Scholar
  7. Gayen DK, Chattopadhyay T (2013) Designing of optimized all-optical half adder circuit using single quantum-dot semiconductor optical amplifier assisted Mach–Zehnder interferometer. J Lightwave Technol 31(12):2029–2035Google Scholar
  8. Gayen DK, Bhattachryya A, Chattopadhyay T, Roy JN (2012) Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J Lightwave Technol 30(21):3387–3393Google Scholar
  9. Godbole A, Dali PP, Janyani V, Tanabe T, Singh G (2016) All optical scalable logic gates using Si3N4 microring resonators. IEEE J Sel Top Quantum Electron 22(6):326–333Google Scholar
  10. Hwang IK, Kim MK, Lee YH (2007) All-optical switching in InGaAsP–InP photonic crystal resonator coupled with microfiber. IEEE Photonics Technol Lett 19(19):1535–1537Google Scholar
  11. Kaur S, Kaler R, Kamal T (2015) All-optical binary full adder using logic operations based on the nonlinear properties of a semiconductor optical amplifier. J Opt Soc Korea 19:222–227Google Scholar
  12. Kumar A (2016) Application of micro-ring resonator as high speed optical gray code converter. Opt Quantum Electron 48:460Google Scholar
  13. Kumar S, Kumar Raghuwanshi S, Rahman BMA (2015) Design of universal shift register based on an electro-optic effect of LiNbO3 in Mach–Zehnder interferometer for high-speed communication. Opt Quantum Electron 47:3509Google Scholar
  14. Madani A, Azarinia H, Latifi H (2013) Design and fabrication of a polymer microring resonator with novel optical material at add/drop geometry using laser beam direct write lithography technique. Int J Light Electron Opt 124(14):1746–1748Google Scholar
  15. Mehdizadeh FMS, Alipour-Banaei H (2017) Proposal for 4–2 optical encoder based on photonic crystals. IET Optoelectron 11(1):29–35Google Scholar
  16. Mookherjea S, Schneider MA (2008) The nonlinear microring add-drop filter. Opt Express 16:15130–15136Google Scholar
  17. Phatharaworamet T, Teeka C, Jomtarak R, Mitatha S, Yupapin PP (2010) Random binary code generation using dark-bright soliton conversion control within a Panda-ring resonator. J Lightwave Technol 28(19):2804–2809Google Scholar
  18. Raj A, Bhambri K, Gupta N (2014) Realization of all-optical full adder by utilizing DM soliton pulses. Int J Comput Appl 96(19):13–16Google Scholar
  19. Rakshit JK, Chattopadhyay T, Roy JN (2013) Design of ring resonator-based all-optical switch for logic and arithmetic operations—a theoretical study. Int J Light Electron Opt 124(23):6048–6057Google Scholar
  20. Rakshit JK, Roy JN, Chattopadhyay T (2014) A theoretical study of all optical clocked D flip-flop using single microring resonator. J Comput Electron 13:278Google Scholar
  21. Seifert S, Runge P (2016) Revised refractive index and absorption of In1-xGaxAsyP1-y lattice-matched to InP in transparent and absorption IR-region. Opt Mater Express 6:629–639Google Scholar
  22. Stanley AI, James E, Nweke FU (2015) The use of SOA-based Mach–Zehnder interferometer in designing/implementing all-optical integrated full adder-subtractor and demultiplexer. Indian J Eng Mater Sci 6(1):40–44Google Scholar
  23. Teeka C, Chaiyachet P, Yupapin PP (2009) Soliton collision management in a microring resonator system. Phys Proc 2(1):67–73Google Scholar
  24. Teeka C, Jalil MA, Yupapin PP, Ali J (2010) Novel tunable dynamic tweezers using dark-bright soliton collision control in an optical add/drop filter. IEEE Trans Nanobiosci 9(4):258–262Google Scholar
  25. Theresal T, Sathish K, Aswinkumar R (2015) A new design of optical reversible adder and subtractor using MZI. Int J Sci Res Publ 5(4):1–6Google Scholar
  26. Thongmee S, Yupapin PP (2011) All optical half adder/subtractor using dark-bright soliton conversion control. Proc Eng 8:217–222Google Scholar
  27. Tian Y, Zhao Y, Chen W, Guo A, Li D, Zhao G, Liu Z, Xiao H, Liu G, Yang J (2015) Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators. Opt Express 23:26342–26355Google Scholar
  28. Wang W, Chu ST, Little BE, Pasquazi A, Wang Y, Wang L, Zhang W, Wang L, Hu X, Wang G, Hu H, Su Y, Li F, Liu Y, Zhao W (2016) Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci Rep 6:28501Google Scholar
  29. Xu Q, Fattal D, Beausoleil R (2008) Silicon microring resonators with 1.5-µm radius. Opt Express 16:4309–4315Google Scholar
  30. Yan S, Li M, Luo L, Ma K, Xue C, Zhang W (2014) Optimisation design of coupling region based on SOI microring resonator. Micromachines 6(1):151–159Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Soysouvanh
    • 1
  • P. Phongsanam
    • 2
  • S. Mitatha
    • 1
  • J. Ali
    • 3
  • P. Yupapin
    • 4
    • 5
    Email author
  • I. S. Amiri
    • 6
  • K. T. V. Grattan
    • 7
  • M. Yoshida
    • 8
  1. 1.Department of Computer Engineering, Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Faculty of EngineeringKasem Bundit UniversityBangkokThailand
  3. 3.Laser Center, IbnuSina Institute for Industrial and Scientific ResearchUniversiti Teknologi Malaysia (UTM)SkudaiMalaysia
  4. 4.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  6. 6.Division of Materials Science and EngineeringBoston UniversityBostonUSA
  7. 7.Department of Electrical and Electronic Engineering, School of Mathematics, Computer Science and EngineeringThe City, University of LondonLondonUK
  8. 8.Department of Embedded Technology, School of Information and Telecommunication EngineeringTokai UniversityTokyoJapan

Personalised recommendations