Advertisement

Microsystem Technologies

, Volume 25, Issue 2, pp 399–411 | Cite as

Numerical simulation and modelling of a novel MEMS capacitive accelerometer based microphone for fully implantable hearing aid

  • Apoorva DwivediEmail author
  • Gargi Khanna
Technical Paper
  • 73 Downloads

Abstract

The present work proposes a novel MEMS capacitive accelerometer based microphone with enhanced sensitivity. The accelerometer design is simulated in COMSOL MULTIPHYSICS 4.2, and the complete model including the electronic detection system is implemented in SIMULINK. The accelerometer is proposed to serve as a microphone in the fully implantable hearing application which can be surgically implanted at the middle ear bone structure. Therefore, the design parameters such as size, weight and resonant frequency require deliberation. A novel analytical model considering the impact of the width of the microlever and the capacitive fringe effects on the performance of the sensor has been developed. The accelerometer is designed within a sensing area of 1 mm2 and accomplishes a nominal capacitance of 4.85 pF, an excellent capacitive sensitivity of 5.91 fF/g and voltage sensitivity of 11.2 mV/g.

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. Briggs RJ, Eder HC, Seligman PM, Cowan RS, Plant KL, Dalton J, Money DK, Patrick JF (2008) Initial clinical experience with a totally implantable cochlear implant research device. Otol Neurotol 29(2):114–119CrossRefGoogle Scholar
  2. Bruschini L, Forli F, Santoro A, Bruschini P, Berrettini S (2009) Fully implantable Otologics MET Carina™ device for the treatment of sensorineural hearing loss. Preliminary surgical and clinical results. Acta Otorhinolaryngol Ital 29(2):79Google Scholar
  3. Catalán Izquierdo S, BUENO BARRACHINA JO, Cañas Peñuelas CS, Cavallé Sesé F (2009) Capacitance evaluation on parallel-plate capacitors by means of finite element analysis. In: Renewable energy and power quality journal 2009 (vol 1, no. 7, pp 613–616). AEDERMACP (European Association for the Development of Renewable Energies and Power Quality)Google Scholar
  4. Häusler R, Stieger C, Bernhard H, Kompis M (2008) A novel implantable hearing system with direct acoustic cochlear stimulation. Audiol Neurotol 13(4):247–256CrossRefGoogle Scholar
  5. Khan S, Ananthasuresh GK (2014) Improving the sensitivity and bandwidth of in-plane capacitive microaccelerometers using compliant mechanical amplifiers. J Microelectromech Syst 23(4):871–887CrossRefGoogle Scholar
  6. Ko WH, Zhang R, Huang P, Guo J, Ye X, Young DJ, Megerian CA (2009) Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid systems. IEEE Trans Biomed Circuits Syst 3(5):277–285CrossRefGoogle Scholar
  7. Koch M, Eßinger TM, Stoppe T, Lasurashvili N, Bornitz M, Zahnert T (2016) Fully implantable hearing aid in the incudostapedial joint gap. Hear Res 340:169–178CrossRefGoogle Scholar
  8. Kraus EM, Shohet JA, Catalano PJ (2011) Envoy esteem totally implantable hearing system: phase 2 trial, 1-year hearing results. Otolaryngol Head Neck Surg 145(1):100–109CrossRefGoogle Scholar
  9. Leysieffer H, Baumann JW, Mayer R, Müller D, Müller G, Schön T, Volz A, Zenner HP (1998) A totally implantable hearing aid for inner ear deafness: TICA LZ 3001. HNO 46(10):853–863CrossRefGoogle Scholar
  10. Memari F, Asghari A, Daneshi A, Jalali A (2011) Safety and patient selection of totally implantable hearing aid surgery: envoy system, Esteem. Eur Arch Oto-Rhino-Laryngol 268(10):1421–1425CrossRefGoogle Scholar
  11. Pulcherio JO, Bittencourt AG, Burke PR, da Costa Monsanto R, de Brito R, Tsuji RK, Bento RF (2014) Carina® and Esteem®: a systematic review of fully implantable hearing devices. PLoS One 9(10):e110636CrossRefGoogle Scholar
  12. Silva LL, Rodrigues JR, Passaro A, Almeida VR (2017) Dynamic Sensitivity study of MEMS capacitive acceleration transducer based on analytical squeeze film damping and mechanical thermoelasticity approaches. arXiv:1708.01812
  13. Su XP, Yang HS (2001a) Single-stage microleverage mechanism optimization in a resonant accelerometer. Struct Multidiscip Optim 21(3):246–252MathSciNetCrossRefGoogle Scholar
  14. Su XP, Yang HS (2001b) Two-stage compliant microleverage mechanism optimization in a resonant accelerometer. Struct Multidiscip Optim 22(4):328–334CrossRefGoogle Scholar
  15. Urquiza R, López J, Gonzalez-Herrera A, Povedano V, Ciges M (2009) Tympanic-ossicular prostheses and MEMS technology: whats and whys. Acta Otolaryngol 129(4):411–415CrossRefGoogle Scholar
  16. Uziel A, Mondain M, Hagen P, Dejean F, Doucet G (2003) Rehabilitation for high-frequency sensorineural hearing impairment in adults with the Symphonix Vibrant Soundbridge: a comparative study. Otol Neurotol 24(5):775–783CrossRefGoogle Scholar
  17. Varshney S (2016) Deafness in india. Indian J Otol 22(2):73CrossRefGoogle Scholar
  18. Wang D (2017) Deep learning reinvents the hearing aid. IEEE Spectr 54(3):32–37CrossRefGoogle Scholar
  19. Woo ST, Shin DH, Lim HG, Seong KW, Gottlieb P, Puria S, Lee KY, Cho JH (2015) A new trans-tympanic microphone approach for fully implantable hearing devices. Sensors 15(9):22798–22810CrossRefGoogle Scholar
  20. Yip M, Jin R, Nakajima HH, Stankovic KM, Chandrakasan AP (2015) A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. IEEE J Solid-State Circuits 50(1):214–229CrossRefGoogle Scholar
  21. Young DJ, Zurcher MA, Semaan M, Megerian CA, Ko WH (2012) MEMS capacitive accelerometer-based middle ear microphone. IEEE Trans Biomed Eng 59(12):3283–3292CrossRefGoogle Scholar
  22. Zargarpour N, Zarifi MH (2015) A piezoelectric micro-electromechanical microphone for implantable hearing aid applications. Microsyst Technol 21(4):893–902CrossRefGoogle Scholar
  23. Zargarpour N, Abdi H, Bahador HJ (2017) Low-noise and small-area integrated amplifier circuit for mems-based implantable hearing aid applications. Microsyst Technol 23(7):2965–2971CrossRefGoogle Scholar
  24. Zeimpekis I, Sari I, Kraft M (2012) Characterization of a mechanical motion amplifier applied to a MEMS accelerometer. J Microelectromech Syst 21(5):1032–1042CrossRefGoogle Scholar
  25. Zeng FG, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 1:115–142CrossRefGoogle Scholar
  26. Zenner HP, Leysieffer H (2001) Total implantation of the Implex TICA hearing amplifier implant for high-frequency sensorineural hearing loss: the Tübingen University experience. Otolaryngol Clin North Am 34(2):417–446CrossRefGoogle Scholar
  27. Zenner HP, Baumann JW, Reischl G, Plinkert P, Zimmermann R, Mauz PS, Limberger A, Maassen MM (2003) Patient selection for incus body coupling of a totally implantable middle ear implant. Acta Otolaryngol 123(6):683–696CrossRefGoogle Scholar
  28. Zhou W, Chen Y, Peng B, Yang H, Yu H, Liu H, He X (2014) Air damping analysis in comb microaccelerometer. Adv Mech Eng 6:373172CrossRefGoogle Scholar
  29. Zurcher MA, Semaan M, Megerian CA, Ko WH, Young DJ (2010) A MEMS capacitive accelerometer design as middle ear microphone based on ossicular chain micromechanic characterization at umbo for fully implantable cochlear prosthesis. Sens Mater 22(6):297–312Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronics and Communications Engg. DepartmentNIT HamirpurHamirpurIndia

Personalised recommendations