Microsystem Technologies

, Volume 25, Issue 2, pp 541–549 | Cite as

Novel fabrication of extremely high aspect ratio and straight nanogap and array nanogap electrodes

  • Mir Mehdi Hashemi
  • Alireza NikfarjamEmail author
  • Hasan Raji
Technical Paper


We reported a reproducible, simple and novel method for fabricating electrodes with high aspect ratio and highly straight nanometer size gap. The gap size could be controlled in a wide range between several nm up to several hundreds of nm, although in this work our individual gap size was 172 nm. In this method a single nanofiber was aligned as a sacrificial structure using a secondary electrical field and its diameter lowered through thermal treatment to obtain smallest gap size. Then, after deposition of blanket metal, nanofiber was removed obtaining nano scale gap. We predict the application of these simple fabricated gaps for diverse fields. The expensive, time consuming, none-reproducible and low accuracy fabrication methods can supersede by this cost effective, facile and fast method. It can provide mass production for precisely positioned nanoscale gaps, ignoring electrode and substrate materials. The electrodes hold the advantage of maximum straightness comparing to other similar nano fabrication methods. Fabricated gaps have large aspect ratio (in the order of 106). Also array gaps with average gap size of 400 nm were fabricated. Same size gaps could be fabricated in a row by this method. Different parameters in alignment were taken into account and studied. The process shows great potential for facile and batch fabrication of parallel submicron gaps for diverse applications including gas sensing, bio-sensing and nanofluidic systems.



  1. Balakrishnan SR, Hashim U, Letchumanan GR, Kashif M, Ruslinda AR, Liu W, Poopalan P (2014) Development of highly sensitive polysilicon nanogap with APTES/GOx based lab-on-chip biosensor to determine low levels of salivary glucose. Sens Actuators A 220:101–111CrossRefGoogle Scholar
  2. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Veeradasan P, Ruslinda AR (2016) Polysilicon nanogap lab-on-chip facilitates multiplex analyses with single analyte. Biosens Bioelectron 84:44–52CrossRefGoogle Scholar
  3. Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM (2015) Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron 70:5–14CrossRefGoogle Scholar
  4. Burger C, Hsiao BS, Chu B (2006) Nanofibrous materials and their applications. Annu Rev Mater Res 36:333–368CrossRefGoogle Scholar
  5. Chaurey V, Chiang PC, Polanco C, Su YH, Chou CF, Swami NS (2010) Interplay of electrical forces for alignment of sub-100 nm electrospun nanofibers on insulator gap collectors. Langmuir 26(24):19022–19026CrossRefGoogle Scholar
  6. Danhel A, Mansfeldova V, Janda P, Vyskocil V, Barek J (2011) Crystallic silver amalgam—a novel electrode material. Analyst 136:3656–3662CrossRefGoogle Scholar
  7. Fardindoost S, Rahimi F, Ghasempour R (2010) Pd doped WO3 films prepared by sol–gel process for hydrogen sensing. Int J Hydrogen Energy 35(2):854–860CrossRefGoogle Scholar
  8. Gómez-Pastora J, Xue X, Karampelas IH, Bringas E, Furlani EP, Ortiz I (2017) Analysis of separators for magnetic beads recovery: from large systems to multifunctional microdevices. Sep Purif Technol 172:16–31CrossRefGoogle Scholar
  9. Hájková A, Vyskočil V, Josypčuk B, Barek J (2016) A miniaturized electrode system for voltammetric determination of electrochemically reducible environmental pollutants. Sens Actuators B Chem 227:263–270CrossRefGoogle Scholar
  10. Huck C, Neubrech F, Vogt J, Toma A, Gerbert D, Katzmann J, Pucci A (2014) Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8(5):4908–4914CrossRefGoogle Scholar
  11. Jang B, Cho S, Park C, Lee H, Song MJ, Lee W (2015) Palladium nanogap-based H2 sensors on a patterned elastomeric substrate using nanoimprint lithography. Sens Actuators B Chem 221:593–598CrossRefGoogle Scholar
  12. Jang B, Kim W, Song MJ, Lee W (2017) Thermal stability of the sensing properties in H2 sensors composed of Pd nanogaps on an elastomeric substrate. Sens Actuators B Chem 240:186–192CrossRefGoogle Scholar
  13. Jeon HJ, Lee EH, Yoo HW, Kim KH, Jung HT (2014) Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon. Nanoscale 6(11):5953–5959CrossRefGoogle Scholar
  14. Kim W, Jang B, Lee HS, Lee W (2016) Reliability and selectivity of H2 sensors composed of Pd film nanogaps on an elastomeric substrate. Sens Actuators B Chem 224:547–551CrossRefGoogle Scholar
  15. Kim DS, Jeong YJ, Lee BK, Shanmugasundaram A, Lee DW (2017) Piezoresistive sensor-integrated PDMS cantilever: a new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes. Sensors Actuators B Chem 240:566–572CrossRefGoogle Scholar
  16. Lam B, Zhou W, Kelley SO, Sargent EH (2015) Programmable definition of nanogap electronic devices using self-inhibited reagent depletion. Nat Commun 6:6940CrossRefGoogle Scholar
  17. Lefebvre J, Radosavljević M, Johnson AT (2000) Fabrication of nanometer size gaps in a metallic wire. Appl Phys Lett 76(25):3828–3830CrossRefGoogle Scholar
  18. Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges JC (2012) High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Appl Phys Lett 100(21):213507CrossRefGoogle Scholar
  19. Libansky M, Zima J, Barek J, Dejmkova H (2014) Construction of an electrochemical cell system based on carbon composite film electrodes and its application for voltammetric determination of triclosan. Electroanalysis 26:1920–1927CrossRefGoogle Scholar
  20. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9(1):60–67CrossRefGoogle Scholar
  21. Liu J, Wang L, Ouyang W, Wang W, Qin J, Xu Z, Wang L (2015) Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes. Biosens Bioelectron 72:288–293CrossRefGoogle Scholar
  22. Nikfarjam A, Hosseini S, Salehifar N (2017) Fabrication of a highly sensitive single aligned TiO2 and gold nanoparticle embedded TiO2 nano-fiber gas sensor. ACS Appl Mater Interfaces 9(18):15662–15671CrossRefGoogle Scholar
  23. Pile DFP, Ogawa T, Gramotnev DK, Matsuzaki Y, Vernon KC, Yamaguch K, Okamoto T, Haraguchi M, Fukui M (2005) Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87:261114/1–261114/3Google Scholar
  24. Pujol-Vila F, Giménez-Gómez P, Santamaria N, Antúnez B, Vigués N, Díaz-González M, Muñoz-Berbel X (2016) Portable and miniaturized optofluidic analysis system with ambient light correction for fast in situ determination of environmental pollution. Sens Actuators B Chem 222:55–62CrossRefGoogle Scholar
  25. Singh S, Kondekar PN, Jaiswal NK (2016) Label-free biosensor using nanogap embedded dielectric modulated Schottky tunneling source impact ionization MOS. Microelectron Eng 149:129–134CrossRefGoogle Scholar
  26. Skalová V, Gonçalves LM, Navrátil T, Barek J, Rodrigues JA, Vyskočil V (2017) Miniaturized voltammetric cell for cathodic voltammetry making use of an agar membrane. J Electroanal Chem. Google Scholar
  27. Song H, Reed MA, Lee T (2011) Single molecule electronic devices. Adv Mater 23(14):1583–1608CrossRefGoogle Scholar
  28. Tsutsui K, Nakata M, Morita M, Tokuda M, Nagatsuma K, Onozato H, Wada Y (2007) Novel fabrication technologies of planar nano-gap electrodes for single molecule evaluation. Curr Appl Phys 7(4):329–333CrossRefGoogle Scholar
  29. Tvrdikova J, Danhel A, Barek J, Vyskocil V (2012) Voltammetric and amperometric determination of selected dinitronaphthalenes using single crystal silver amalgam based sensors. Electrochim Acta 56:23–30CrossRefGoogle Scholar
  30. Van Megen MJJ, Bomer JG, Olthuis W, Van Den Berg A (2014) Solid state nanogaps for electrochemical detection fabricated using edge lithography. Microelectron Eng 115:21–25CrossRefGoogle Scholar
  31. Villarroya M, Barniol N, Martin C, Pérez-Murano F, Esteve J, Bruchhaus L, Gierak J (2007) Fabrication of nanogaps for MEMS prototyping using focused ion beam as a lithographic tool and reactive ion etching pattern transfer. Microelectron Eng 84(5):1215–1218CrossRefGoogle Scholar
  32. Wasilewski T, Gębicki J, Kamysz W (2017) Bioelectronic nose: current status and perspectives. Biosens Bioelectron 87:480–494CrossRefGoogle Scholar
  33. Williams R, Wienroth M (2014) Identity, mass fatality and forensic genetics. New Genet Soc 33(3):257–276CrossRefGoogle Scholar
  34. Wu Y, Hong W, Akiyama T, Gautsch S, Kolivoska V, Wandlowski T, de Rooij NF (2013) Batch fabrication of gold–gold nanogaps by E-beam lithography and electrochemical deposition. Nanotechnology 24(23):235302CrossRefGoogle Scholar
  35. Xiong Y, Tan J, Wang C, Zhu Y, Fang S, Wang Q, Duan M (2016) A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching. J Lumin 179:581–587CrossRefGoogle Scholar
  36. Yi M, Jeong KH, Lee LP (2005) Theoretical and experimental study towards a nanogap dielectric biosensor. Biosens Bioelectron 20(7):1320–1326CrossRefGoogle Scholar
  37. Zhang B, Zhang M, Song K, Li Q, Cui T (2013) Shrink induced nanostructures for energy conversion efficiency enhancement in photovoltaic devices. Appl Phys Lett 103(2):023104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MEMS&NEMS Laboratory, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran

Personalised recommendations