Microsystem Technologies

, Volume 25, Issue 2, pp 633–640 | Cite as

The effect of increasing interfacial strength in micro fluidic system for heat detection with micro-sandglass shaped interlocks

  • Zhuqing WangEmail author
  • Mitsuteru Kimura
  • Takahito Ono
Technical Paper


We present a useful method to increase interfacial strength for micro fluidic system of calorimetry biosensor. The micro-sandglass shaped posts were fabricated by deep silicon reactive ion etching and Tetramethyl ammonium hydroxide (25 wt% TMAH) anisotropic etching processes, sequentially. The interfacial strength can be controlled by structure of interlock which dependents on the TMAH etching time and diameter of micro pillar. The fabricated micro-standglass shaped interlocks were applied in micro fluidic structure to increase interfacial strength of micro fluidic structure. The detection result of reactive heat using calorimetry biosensor demonstrates that the interfacial strength can be increased by micro-standglass shaped interlocks to avoid leakage in micro fluidic system.



This research was supported by the Center of Innovation (COI) program of Japan Science and Technology Agency (JST).


  1. Ahmad LM, Towe B, Wolf A et al (2010) Binding event measurement using a chip calorimeter coupled to magnetic beads. Sens Actuators B Chem 145:239–245. CrossRefGoogle Scholar
  2. Baier V, Födisch R, Ihring A et al (2005) Highly sensitive thermopile heat power sensor for micro-fluid calorimetry of biochemical processes. Sens Actuators A Phys 123–124:354–359. CrossRefGoogle Scholar
  3. Bataillard P, Steffgen E, Haemmerli S et al (1993) An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, urea and penicillin. Biosens Bioelectron 8:89–98CrossRefGoogle Scholar
  4. Higuera-Guisset J, Rodríguez-Viejo J, Chacón M et al (2005) Calorimetry of microbial growth using a thermopile based microreactor. Thermochim Acta 427:187–191. CrossRefGoogle Scholar
  5. Hilton JP, Nguyen T, Barbu M et al (2012) Bead-based polymerase chain reaction on a microchip. Microfluid Nanofluidics 13:749–760. CrossRefGoogle Scholar
  6. Huang X, Li S, Davis E et al (2013) A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring. J Micromech Microeng. Google Scholar
  7. Huang X, Leduc C, Ravussin Y et al (2014) A differential dielectric affinity glucose sensor. Lab Chip 14:294–301. CrossRefGoogle Scholar
  8. Kim J, Hilton JP, Yang KA et al (2013) Nucleic acid isolation and enrichment on a microchip. Sens Actuators A Phys 195:183–190. CrossRefGoogle Scholar
  9. Lee W, Lee J, Koh J (2012) Development and applications of chip calorimeters as novel biosensors. Nanobiosens Dis Diagn 1:17–29. CrossRefGoogle Scholar
  10. Lerchner J, Wolf A, Wolf G, Fernandez I (2006) Chip calorimeters for the investigation of liquid phase reactions: design rules. Thermochim Acta 446:168–175. CrossRefGoogle Scholar
  11. Peng HC, Khoo HS, Tseng FG (2012) Increased interfacial strength at microscale silicon-polymer interface by nanowires assisted micro-sandglass shaped interlocks. Jpn J Appl Phys 51:1–8. CrossRefGoogle Scholar
  12. Peng HC, Wang CN, Yeh TK et al (2013) A high efficient micro-proton exchange membrane fuel cell by integrating micro-nano synergical structures. J Power Sources 225:277–285. CrossRefGoogle Scholar
  13. Song Y, Huang YY, Liu X et al (2014) Point-of-care technologies for molecular diagnostics using a drop of blood. Trends Biotechnol 32:132–139. CrossRefGoogle Scholar
  14. Tangutooru SM, Kopparthy VL, Nestorova GG, Guilbeau EJ (2012) Dynamic thermoelectric glucose sensing with layer-by-layer glucose oxidase immobilization. Sens Actuators B Chem 166–167:637–641. CrossRefGoogle Scholar
  15. Wang B, Lin Q (2012) A MEMS differential-scanning-calorimetric sensor for thermodynamic characterization of biomolecules. J Microelectromech Syst 21:1165–1171. CrossRefGoogle Scholar
  16. Wang L, Sipe DM, Xu Y, Lin Q (2008a) A MEMS thermal biosensor for metabolic monitoring applications. J Microelectromech Syst 17:318–327. CrossRefGoogle Scholar
  17. Wang L, Wang B, Lin Q (2008b) Demonstration of MEMS-based differential scanning calorimetry for determining thermodynamic properties of biomolecules. Sens Actuators B Chem 134:953–958. CrossRefGoogle Scholar
  18. Wang B, Huang F, Nguyena TH et al (2013) Microcantilever-based label-free characterization of temperature-dependent biomolecular affinity binding. Sens Actuators B Chem 176:653–659. CrossRefGoogle Scholar
  19. Yabuki T, Nakabeppu O (2014) Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor. Int J Heat Mass Transf 76:286–297. CrossRefGoogle Scholar
  20. Zhang L, Dong T (2013) A Si/SiGe quantum well based biosensor for direct analysis of exothermic biochemical reaction. J Micromech Microeng. Google Scholar
  21. Zhang Y, Tadigadapa S (2003) Microthermopiles integrated with fluidic channels as calorimetric MEMS biosensors. TRANSDUCERS 2003—12th int conf solid-state sensors. Actuators Microsyst Dig Tech Pap 2:1176–1179. Google Scholar
  22. Zhang Y, Tadigadapa S (2004) Calorimetric biosensors with integrated microfluidic channels. Biosens Bioelectron 19:1733–1743. CrossRefGoogle Scholar
  23. Zhu J, Nguyen T, Pei R et al (2012) Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. Lab Chip 12:3504. CrossRefGoogle Scholar
  24. Zhu J, Palla M, Ronca S et al (2013) A MEMS-based approach to single nucleotide polymorphism genotyping. Sens Actuators A Phys 195:175–182. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute for Engineering and TechnologyTohoku Gakuin UniversitySendaiJapan
  2. 2.Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations