Advertisement

Compact modelling-based coupled simulation of RF-MEMS networks for 5G and Internet of Things (IoT) applications

  • J. Iannacci
Technical Paper
  • 43 Downloads

Abstract

In this work, the exploitation of an on-purpose software library, previously presented by the author, is discussed in order to simulate the coupled behaviour of RF-MEMS (MicroElectroMechanical-Systems for Radio Frequency applications) devices and networks within a commercial integrated circuits (ICs) development framework. After the validation of the proposed tool against electromechanical experimental measurements of an RF-MEMS switch, the software library is exploited to simulate the multiphysics electromechanical and electromagnetic behaviour of a MEMS-based reconfigurable RF power step attenuator (complex network) manufactured within a surface micromachining RF-MEMS technology platform. The dynamic (transient) electromechanical measured behaviour of the MEMS switches comprised in the attenuator is well-predicted by the simulations based on the implemented compact models, proving the latter ones properly take into account all the salient features determining the coupled behaviour of MEMS devices, i.e. electromechanical transduction, elasticity, inertia, as well as dissipative effects, like gas viscous damping. Furthermore, simulation of the RF-MEMS complex network is completed by the inclusion of S-parameters (Scattering parameters) behaviour. To this purpose, frequency analysis of different attenuation levels realised by the network, depending on the configuration of several micro-switches, is performed. The case study reported in this paper represents a comprehensive exploitation example of the MEMS compact model library, aimed to the coupled electromechanical and electromagnetic simulation of RF-MEMS devices and networks within commercial ICs development tools, like Cadence, Keysight advanced design system (ADS), Mentor, and so on. Eventually, the discussion presented in this paper mentions a rather efficient solution to enable the simulation of entire hybrid circuits and blocks, composed of MEMS/RF-MEMS passive elements and standard semiconductor active circuitry (e.g. CMOS), within the same analysis and development environment.

Notes

References

  1. Behera M, Kratyuk V, De SK, Aluru NR, Hu Y, Mayaram K (2005) Accurate simulation of RF MEMS VCO performance including phase noise. IEEE JMEMS 14:313–325.  https://doi.org/10.1109/JMEMS.2004.839317 Google Scholar
  2. Dambrine G, Cappy A, Heliodore F, Playez E (1988) A new method for determining the FET small-signal equivalent circuit. IEEE T-MTT 36:1151–1159.  https://doi.org/10.1109/22.3650 CrossRefGoogle Scholar
  3. De Los Santos HJ (2002) RF Mems circuit design for wireless communications. Artech House, NorwoodGoogle Scholar
  4. Del Tin L, Iannacci J, Gaddi R, Gnudi A, Rudnyi EB, Greiner A, Korvink JG (2007) Non linear compact modeling of RE-MEMS switches by means of model order reduction. In: Proceedings of IEEE TRANSDUCERS, pp. 635–638.  https://doi.org/10.1109/sensor.2007.4300210
  5. Gaddi R, Iannacci J, Gnudi A (2003) Mixed-domain simulation of intermodulation in RF-MEMS capacitive shunt switches. In: Proceedings of the 33rd European microwave conference, EuMC vol. 2, pp. 671–674.  https://doi.org/10.1109/eumc.2003.177566
  6. Gaddi R, Bellei M, Gnudi A, Margesin B, Giacomozzi F (2004) Interdigitated low-loss ohmic RF MEMS switches. In: Proceedings of NSTI nanotechnology, pp. 327–330Google Scholar
  7. Giacomozzi F, Mulloni V, Colpo S, Iannacci J, Margesin B, Faes A (2011) A Flexible Fabrication Process for RF MEMS Devices. Rom J Inf Sci Technol ROMJIST 14:259–268Google Scholar
  8. Hailongk W, Guangbao S, Youbao L (2006) Lumped behavioral modeling for suspended MEMS. In: Proceedings of the 8th international conference on solid-state and integrated circuit technology ICSICT, pp. 679–681.  https://doi.org/10.1109/icsict.2006.306435
  9. Iannacci J (2013a) Practical guide to RF-MEMS. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  10. Iannacci J (2013b) Compact Modeling of RF MEMS devices. In: Brand O, Fedder GK, Hierold C, Korvink JG, Tabata O (eds) System-level modeling of MEMS. Wiley-VCH, Weinheim.  https://doi.org/10.1002/9783527647132.ch8 Google Scholar
  11. Iannacci J (2015) RF-MEMS: an enabling technology for modern wireless systems bearing a market potential still not fully displayed. Springer Microsyst Technol 21:2039–2052.  https://doi.org/10.1007/s00542-015-2665-6 CrossRefGoogle Scholar
  12. Iannacci J (2017) RF-MEMS Technology for High-Performance Passives: The challenge of 5G mobile applications. IOP Publishing, Bristol.  https://doi.org/10.1088/978-0-7503-1545-6 Google Scholar
  13. Iannacci J (2018a) Internet of things (IoT); internet of everything (IoE); tactile internet; 5G—A (not so evanescent) unifying vision empowered by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS). Elsevier Sens Actuators A Phys 272:187–198.  https://doi.org/10.1016/j.sna.2018.01.038 CrossRefGoogle Scholar
  14. Iannacci J (2018b) Surfing the hype curve of RF-MEMS passive components: towards the 5th generation (5G) of mobile networks. Springer Microsyst Technol.  https://doi.org/10.1007/s00542-018-3718-4 Google Scholar
  15. Iannacci J, Gaddi R, Gnudi A (2007) Non-linear electromechanical RF model of a MEMS varactor based on VerilogA© and lumped-element parasitic network. In: Proceedings of EUMC 1342-1345.  https://doi.org/10.1109/eumc.2007.4405451
  16. Iannacci J, Bartek M, Tian J, Gaddi R, Gnudi A (2008) Electromagnetic optimization of an RF-MEMS wafer-level package. Elsevier Sens Actuators A Phys 142:434–441.  https://doi.org/10.1016/j.sna.2007.08.018 CrossRefGoogle Scholar
  17. Iannacci J, Giacomozzi F, Colpo S, Margesin B, Bartek M (2009a) A general purpose reconfigurable MEMS-based attenuator for RF and microwave applications. In: Proceedings of IEEE EUROCON, pp. 1201–1209.  https://doi.org/10.1109/eurcon.2009.5167788
  18. Iannacci J, Repchankova A, Macii D, Niessner M (2009b) A measurement procedure of technology-related model parameters for enhanced RF-MEMS design. In: Proceedings of IEEE AMUEM, pp. 44–49.  https://doi.org/10.1109/amuem.2009.5207609
  19. Iannacci J, Repchankova A, Faes A, Tazzoli A, Meneghesso G, Dalla Betta G-F (2010a) Enhancement of RF-MEMS switch reliability through an active anti-stiction heat-based mechanism. Elsevier Microelectron Reliab 50:1599–1603.  https://doi.org/10.1016/j.microrel.2010.07.108 CrossRefGoogle Scholar
  20. Iannacci J, Gaddi R, Gnudi A (2010b) Experimental validation of mixed electromechanical and electromagnetic modeling of RF-MEMS devices within a standard IC simulation environment. IEEE JMEMS 19:526–537.  https://doi.org/10.1109/JMEMS.2010.2048417 Google Scholar
  21. Iannacci J, Huhn M, Tschoban C, Potter H (2016a) RF-MEMS technology for 5G: series and shunt attenuator modules demonstrated up to 110 GHz. IEEE Electron Device Lett 37:1336–1339.  https://doi.org/10.1109/LED.2016.2604426 CrossRefGoogle Scholar
  22. Iannacci J, Huhn M, Tschoban C, Pötter H (2016b) RF-MEMS technology for future (5G) mobile and high-frequency applications: reconfigurable 8-Bit power attenuator tested up to 110 GHz. IEEE Electron Device Lett 37:1646–1649.  https://doi.org/10.1109/LED.2016.2623328 CrossRefGoogle Scholar
  23. Iannacci J, Tschoban C, Reyes J, Maaß U, Huhn M, Ndip I, Pötter H (2016c) RF-MEMS for 5G mobile communications: a basic attenuator module demonstrated up to 50 GHz. In: Proceedings of IEEE SENSORS, pp. 1–3.  https://doi.org/10.1109/icsens.2016.7808547
  24. Kuenzig T, Iannacci J, Schrag G, Wachutka G (2012) Study of an active thermal recovery mechanism for an electrostatically actuated RF-MEMS switch. In: Proceedings of IEEE EuroSime, pp. 1–7.  https://doi.org/10.1109/esime.2012.6191766
  25. Larcher L, Brama R, Ganzerli M, Iannacci J, Margesin B, Bedani M, Gnudi A (2009) A MEMS reconfigurable quad-band class-E power amplifier for GSM standard. In: Proceedings of IEEE MEMS, pp. 864–867.  https://doi.org/10.1109/memsys.2009.4805520
  26. Larcher L, Brama R, Ganzerli M, Iannacci J, Bedani M, Gnudi A (2009) A MEMS reconfigurable quad-band class-e power amplifier for GSM standard. In: Proceedings of IEEE DATE, pp. 364–368.  https://doi.org/10.1109/date.2009.5090689
  27. Lucyszyn S (2010) Advanced RF MEMS. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Malik AF, Shoaib M, Naseem S, Riaz S (2008) Modeling and designing of RF MEMS switch using ANSYS. In: Proceedings of the 4th international conference on emerging technologies ICET, pp. 44–49.  https://doi.org/10.1109/icet.2008.4777472
  29. Niessner M, Schrag G, Wachutka G (2006) Extraction of physically based high-level models for rapid prototyping of MEMS devices and control circuitry. In: Proceedings of IEEE SENSORS, pp. 915–918.  https://doi.org/10.1109/icsens.2007.355615
  30. Niessner M, Schrag G, Wachutka G, Iannacci J (2010) Modeling and fast simulation of RF-MEMS switches within standard IC design frameworks. In: Proceedings of SISPAD, pp. 317–320.  https://doi.org/10.1109/sispad.2010.5604496
  31. Niessner M, Iannacci J, Peller A, Schrag G, Wachutka G (2010) Macromodel-based simulation and measurement of the dynamic pull-in of viscously damped RF-MEMS switches. In: Proceedings of eurosensors XXIV conference, pp. 78–81.  https://doi.org/10.1016/j.proeng.2010.09.052
  32. Niessner M, Schrag G, Iannacci J, Wachutka G (2011) Macromodel-based simulation and measurement of the dynamic pull-in of viscously damped RF-MEMS switches. Elsevier Sens Actuators A Phys 172:269–279.  https://doi.org/10.1016/j.sna.2011.04.046 CrossRefGoogle Scholar
  33. Niessner M, Schrag G, Iannacci J, Wachutka G (2012) Squeeze-film damping in perforated microstructures: modeling, simulation and pressure-dependent experimental validation. In: Proceedings of microtech conference, pp. 598–601Google Scholar
  34. Novak E, Wan, D-S, Unruh P, Schurig M (2003) MEMS metrology using a strobed interferometric system. In: Proceedings IMEKO, pp. 178–182.  https://doi.org/10.1109/icmens.2003.1222010
  35. Persano A, Siciliano P, Quaranta F, Lucibello A, Marcelli R, Capoccia G, Proietti E, Bagolini A, Iannacci J (2016) Wafer-level thin film micropackaging for RF MEMS applications. In: Proceedings of DTIP, pp. 1–5.  https://doi.org/10.1109/dtip.2016.7514826
  36. Peyrou D, Pons P, Granier H, Leray D, Ferrand A, Yacine K, Saadaoui M, Nicolas A, Tao JW, Plana R (2006) Multiphysics softwares benchmark on ansys/comsol applied For RF MEMS switches packaging simulations. In: Proceedings of EuroSime, pp. 1–8.  https://doi.org/10.1109/esime.2006.1644011
  37. Sordo G, Faes A, Resta G, Iannacci J (2013) Characterization of quartz-based packaging for RF-MEMS. Proc SPIE 8763:1–9.  https://doi.org/10.1117/12.2017856 Google Scholar
  38. Tazzoli A, Autizi E, Barbato M, Meneghesso G, Solazzi F, Farinelli P, Giacomozzi F, Iannacci J, Margesin B, Sorrentino R (2009) Evolution of electrical parameters of dielectric-less ohmic RF-MEMS switches during continuous actuation stress. In: Proceedings of ESSDERC 2009, pp. 343–346.  https://doi.org/10.1109/essderc.2009.5331307
  39. Varadan VK (2003) RF Mems & their applications. Wiley, HobokenGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Materials and Microsystems (CMM), Fondazione Bruno Kessler (FBK)TrentoItaly

Personalised recommendations