Microsystem Technologies

, Volume 25, Issue 1, pp 319–328 | Cite as

Silicon microring resonator waveguide-based graphene photodetector

  • Iraj S. AmiriEmail author
  • M. M. Ariannejad
  • V. J. Sorger
  • P. Yupapin
Technical Paper


Here we study and analyze the performance of a graphene-based photodetector integrated onto a silicon-on-insulator microring using optical and electrical simulations. The electrical simulation reveals the role of material interface losses and allows one to extract key behavioral parameters such as dark current, responsivity and bandwidth.



  1. Ahmad H, Thandavan TMK, Ariannejad MM, Yi CW, Nor RM, Amiri IS (2017a) Enhanced photoresponsivity from hybrid-ZnO nanowires with white LED 400–700-nm illumination. IEEE J Quantum Electron 53:1–6Google Scholar
  2. Ahmad H, Ghasemi M, Amiri I, Ariannejad M, Norizan SF, Latif AA et al (2017b) Gold cone metasurface MIC sensor with monolayer of graphene and multilayer of graphite. Plasmonics 12:497–508CrossRefGoogle Scholar
  3. Amin R, Suer C, Ma Z, Sarpkaya I, Khurgin JB, Agarwal R et al (2017) A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance. Solid-State Electron 136:92–101CrossRefGoogle Scholar
  4. Amiri I, Ariannejad M, Ahmad H (2016) Tunable multi-wavelength generation using InGaAsP/InP microring resonator with detectable resonance wavelength shift due to a sensing cladding section. Chin J Phys 54:780–787CrossRefGoogle Scholar
  5. Amiri IS, Ariannejad MM, Kouhdaragh V, Seyedi SA, Yupapin P (2017) Microring resonator made by ion-exchange technique for detecting the CO2, H2O, and NaCl as cladding layer. J King Saud Univ SciGoogle Scholar
  6. Amiri IS, Ariannejad M, Tajdidzadeh M, Sorger VJ, Ling X, Yupapin P (2018) Fast and slow light generated by surface plasmon wave and gold grating coupling effects. Indian J Phys 92(6):789–798CrossRefGoogle Scholar
  7. Amiri IS, Ariannejad M, Azzuhri S, Anwar T, Kouhdaragh V, Yupapin P (2018b) Vertical Ge photodetector base on InP taper waveguide. Results Phys 9:576–579CrossRefGoogle Scholar
  8. Bao Q, Zhang H, Wang B, Ni Z, Lim CHYX, Wang Y et al (2011) Broadband graphene polarizer. Nat Photonics 5:411–415CrossRefGoogle Scholar
  9. Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T et al (2012) Silicon microring resonators. Laser Photonics Rev 6:47–73CrossRefGoogle Scholar
  10. Brouckaert J, Roelkens G, Van Thourhout D, Baets R (2007) Compact InAlAs–InGaAs metal–semiconductor–metal photodetectors integrated on silicon-on-insulator waveguides. IEEE Photonics Technol Lett 19:1484–1486CrossRefGoogle Scholar
  11. Chen L, Preston K, Manipatruni S, Lipson M (2009) Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Opt Express 17:15248–15256CrossRefGoogle Scholar
  12. Ding Y, Zhu X, Xiao S, Hu H, Frandsen LH, Mortensen NA et al (2015) Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett 15:4393–4400CrossRefGoogle Scholar
  13. Falkovsky L (2008) Optical properties of graphene. J Phys Conf Ser. zbMATHGoogle Scholar
  14. Feng S, Lei T, Chen H, Cai H, Luo X, Poon AW (2012) Silicon photonics: from a microresonator perspective. Laser Photonics Rev 6:145–177CrossRefGoogle Scholar
  15. Freitag M, Low T, Avouris P (2013) Increased responsivity of suspended graphene photodetectors. Nano Lett 13:1644–1648CrossRefGoogle Scholar
  16. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  17. Ghasemi M, Amiri I, Ariannejad M, Ahmad H (2016) Semiconducting subwavelength and nonsubwavelength grating microring resonator as a femtosecond time delayer: a comparative analysis. JOSA B 33:2073–2081CrossRefGoogle Scholar
  18. Green WM, Rooks MJ, Sekaric L, Vlasov YA (2007) Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt Express 15:17106–17113CrossRefGoogle Scholar
  19. Gu T, Petrone N, McMillan JF, van der Zande A, Yu M, Lo G-Q et al (2012) Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat Photonics 6:554–559CrossRefGoogle Scholar
  20. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302CrossRefGoogle Scholar
  21. Hassan H, Ariannejad M, Safaei R, Amiri IS, Ahmad H (2017) Mode-locked erbium-doped fiber laser generation using hybrid ZnO/GO saturable absorber. In: IOP conference series: materials science and engineering, p 012046Google Scholar
  22. Hu X, Long Y, Ji M, Wang A, Zhu L, Ruan Z et al (2016) Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal. Opt Express 24:7168–7177CrossRefGoogle Scholar
  23. Ji M, Cai H, Deng L, Huang Y, Huang Q, Xia J et al (2015) Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator. Opt Express 23:18679–18685CrossRefGoogle Scholar
  24. Johannsen JC, Ulstrup S, Cilento F, Crepaldi A, Zacchigna M, Cacho C et al (2013) Direct view of hot carrier dynamics in graphene. Phys Rev Lett 111:027403CrossRefGoogle Scholar
  25. Koch BR, Fang AW, Cohen O, Bowers JE (2007) Mode-locked silicon evanescent lasers. Opt Express 15:11225–11233CrossRefGoogle Scholar
  26. Kovacevic G, Yamashita S (2016) Waveguide design parameters impact on absorption in graphene coated silicon photonic integrated circuits. Opt Express 24:3584–3591CrossRefGoogle Scholar
  27. Lim AE-J, Song J, Fang Q, Li C, Tu X, Duan N et al (2014) Review of silicon photonics foundry efforts. IEEE J Sel Top Quantum Electron 20:405–416CrossRefGoogle Scholar
  28. Liow T-Y, Ang K-W, Fang Q, Song J-F, Xiong Y-Z, Yu M-B et al (2010) Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization. IEEE J Sel Top Quantum Electron 16:307–315CrossRefGoogle Scholar
  29. Liow T-Y, Song J, Tu X, Lim AE-J, Fang Q, Duan N et al (2013) Silicon optical interconnect device technologies for 40 Gb/s and beyond. IEEE J Sel Top Quantum Electron 19:8200312CrossRefGoogle Scholar
  30. Lipson M (2005) Guiding, modulating, and emitting light on silicon-challenges and opportunities. J Lightwave Technol 23:4222–4238CrossRefGoogle Scholar
  31. Liu Z (2017) Efficient absorption by monolayer graphene in microring resonator. J Phys Conf Ser. Google Scholar
  32. Liu K, Sorger VJ (2015) Electrically-driven carbon nanotube-based plasmonic laser on silicon. Opt Mater Express 5:1910–1919CrossRefGoogle Scholar
  33. Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12:1482–1485CrossRefGoogle Scholar
  34. Marris-Morini D, Vivien L, Fédéli JM, Cassan E, Lyan P, Laval S (2008) Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Opt Express 16:334–339CrossRefGoogle Scholar
  35. Mekis A, Gloeckner S, Masini G, Narasimha A, Pinguet T, Sahni S et al (2011) A grating-coupler-enabled CMOS photonics platform. IEEE J Sel Top Quantum Electron 17:597–608CrossRefGoogle Scholar
  36. Mohsin M, Schall D, Otto M, Noculak A, Neumaier D, Kurz H (2014) Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt Express 22:15292–15297CrossRefGoogle Scholar
  37. Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRefGoogle Scholar
  38. Pospischil A, Humer M, Furchi MM, Bachmann D, Guider R, Fromherz T et al (2013) CMOS-compatible graphene photodetector covering all optical communication bands. Nat Photonics 7:892–896CrossRefGoogle Scholar
  39. Roelkens G, Van Thourhout D, Baets R (2005) Ultra-thin benzocyclobutene bonding of III–V dies onto SOI substrate. Electron Lett 41:561–562CrossRefGoogle Scholar
  40. Roelkens G, Liu L, Liang D, Jones R, Fang A, Koch B et al (2010) III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev 4:751–779CrossRefGoogle Scholar
  41. Song J, Luo X, Tu X, Jia L, Fang Q, Liow T-Y et al (2014) Three-dimensional (3D) monolithically integrated photodetector and WDM receiver based on bulk silicon wafer. Opt Express 22:19546–19554CrossRefGoogle Scholar
  42. Thomson DJ, Gardes FY, Fedeli J-M, Zlatanovic S, Hu Y, Kuo BPP et al (2012) 50-Gb/s silicon optical modulator. IEEE Photonics Technol Lett 24:234–236CrossRefGoogle Scholar
  43. Tu X, Liow T-Y, Song J, Luo X, Fang Q, Yu M et al (2013) 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt Express 21:12776–12782CrossRefGoogle Scholar
  44. Vonsovici AP, Reed GT, Evans AG, Namavar F (1999) Loss measurements for β-SiC-on-insulator waveguides for high-speed silicon-based photonic devices. Silicon-based optoelectronics, vol 3630. International Society for Optics and Photonics, San Jose, USA, pp 115–125. CrossRefGoogle Scholar
  45. Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M et al (2008) Gate-variable optical transitions in graphene. Science 320:206–209CrossRefGoogle Scholar
  46. Wang J, Cheng Z, Shu C, Tsang HK (2015) Optical absorption in graphene-on-silicon nitride microring resonators. IEEE Photonics Technol Lett 27:1765–1767CrossRefGoogle Scholar
  47. Xiao S, Khan MH, Shen H, Qi M (2007) Modeling and measurement of losses in silicon-on-insulator resonators and bends. Opt Express 15:10553–10561CrossRefGoogle Scholar
  48. Zeni L, Bernini R, Pierri R (1999) Reconstruction of doping profiles in semiconductor materials using optical tomography. Solid-State Electron 43:761–769CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Photonics Research CentreUniversity of MalayaKuala LumpurMalaysia
  4. 4.Department of Electrical and Computer EngineeringGeorge Washington UniversityWashingtonUSA

Personalised recommendations