Advertisement

Microsystem Technologies

, Volume 25, Issue 1, pp 211–216 | Cite as

Fabrication and evaluation of a passive SU8-based micro direct glucose fuel cell

  • D. Dector
  • J. M. Olivares-Ramírez
  • V. M. Ovando-Medina
  • A. Sosa Dominguez
  • A. L. Villa
  • A. Duarte-Moller
  • N. Sabaté
  • J. P. Esquivel
  • A. DectorEmail author
Technical Paper
  • 67 Downloads

Abstract

A passive micro direct glucose fuel cell (μDGFC) using SU8-current collector structures of 8 × 14 mm with a grid that allows the delivery of the reagents to the membrane-electrode assembly (MEA) by diffusion and with dimensions of ~ 200 × ~ 180 μm were fabricated by a UV-lithography technique. The SU8-current collectors were coated with Au to provide electric conductivity; a passive μDGFC was set by sandwiching an MEA between two SU8-current collectors and placed between two methacrylate pieces. The electrocatalysts consisted of commercial Au/C as anode and Pt/C as cathode. μDGFC characterization was done by measuring the polarization curves at a glucose concentration close to that found in human blood. The maximum power density achieved was ~ 0.30 mW cm−2 using 5 mM glucose as fuel and oxygen delivered from air as an oxidant. The passive micro fuel cell showed a constant current density for 30 min at a potential of 0.3 V corresponding to the maximum power density.

Notes

Acknowledgements

The authors gratefully acknowledge CONACYT for financial support through “Cátedras CONACyT” project 513 and project FOMIX 279788. The author ALV thanks the Universidad de Antioquia.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Ansari MZ, Bisen M, Cho C (2018) Modelling and analysis of diaphragm integrated SU8/CB nanocomposite piezoresistive polymer microcantilever biosensor. Microsyst Technol.  https://doi.org/10.1007/s00542-018-3777-6 Google Scholar
  2. Campo AD, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17:R81CrossRefGoogle Scholar
  3. Cha H-Y, Choi H-G, Nam J-D, Lee Y, Cho SM, Lee E-S, Lee J-K, Chung C-H (2004) Fabrication of all-polymer micro-DMFCs using UV-sensitive photoresist. Electrochim Acta 50:795–799CrossRefGoogle Scholar
  4. Dector A, Escalona-Villalpando RA, Dector D, Vallejo-Becerra V, Chavez-Ramírez AU, Arriaga LG, Ledesma-García J (2015) Perspective use of direct human blood as an energy source in air- breathing hybrid microfluidic fuel cells. J Power Sources 288:70–75CrossRefGoogle Scholar
  5. Dector A, Galindo-de-la-Rosa J, Amaya-Cruz DM, Ortíz-Verdín A, Guerra-Balcázar M, Olivares-Ramírez JM, Arriaga LG, Ledesma-García J (2017) Towards autonomous lateral flow assays: paper-based microfluidic fuel cell inside and HIV-test using a blood sample as fuel. Int J Hydrogen Energy 42:27979–27986CrossRefGoogle Scholar
  6. Dentinger PM, Krafcik KL, Simison KL, Janek RP, Hachman J (2002) High aspect ratio patterning with a proximity ultraviolet source. Microelectron Eng 61–62:1001–1007CrossRefGoogle Scholar
  7. Dervisevic M, Dervisevic E, Senel M, Cevik E, Yildiz HB, Camurlu P (2017) Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzyme Microb Technol 102:53–59CrossRefGoogle Scholar
  8. Esquivel JP, Senn T, Hernández-Fernández P, Santander J, Lörgen M, Rojas S, Löchel B, Cané C, Sabaté N (2010) Towards a compact SU-8 micro-direct methanol fuel cell. J Power Sources 195:8110–8115CrossRefGoogle Scholar
  9. Esquivel JP, Del Campo FJ, Gómez de la Fuente JL, Rojas S, Sabaté N (2014) Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices. Energy Environ Sci 7:1744–1749CrossRefGoogle Scholar
  10. Fischer PB, Chou SY (1993) Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion etching. Appl Phys Lett 62:2989–2991CrossRefGoogle Scholar
  11. González-Guerrero MJ, Del Campo FJ, Leech D, Sabaté N (2017) Paper-based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosens Bioelectrons 90:475–480CrossRefGoogle Scholar
  12. Hsieh S-S, Kuo J-K, Hwang C-F, Tsai H-H (2004) A novel design and microfabrication for a micro PEMFC. Microsyst Technol 10:121–126CrossRefGoogle Scholar
  13. Hu W, Sarveswaran K, Lieberman M, Bernstein GH (2004) Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). J Vac Sci Technol B 22:1711–1716CrossRefGoogle Scholar
  14. Jia W, Valdes-Ramirez G, Bandodkar AJ, Windmiller JR, Wang J (2013) Epidermal Biofuel Cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:7233–7236CrossRefGoogle Scholar
  15. Ling Z, Lian K, Jian L (2000) Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters. Proc SPIE 3999:1019–1027CrossRefGoogle Scholar
  16. Liu G, Tian Y, Zhang X (2003) Fabrication of microchannels in negative resist. Microsyst Technol 9:461–464CrossRefGoogle Scholar
  17. Liu G, Tian Y, Kan Y (2005) Fabrication of high-aspect-ratio microestructures using SU8 photoresist. Microsyst Technol 11:343–346CrossRefGoogle Scholar
  18. Pinyou P, Conzuelo F, Sliozberg K, Vivekananthan J, Contin A, Pöller S, Plumeré N, Schuhmann W (2015) Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Bioelectrochem 106:22–27CrossRefGoogle Scholar
  19. Stavrinidis G, Michelakis K, Kontomitrou V, Giannakakis G, Sevrisarianos M, Sevrisarianos G, Chaniotakis N, Alifragis Y, Konstantinidis G (2016) SU-8 microneedles based dry electrode for electroencephalogram. Microelectron Eng 159:114–120CrossRefGoogle Scholar
  20. Torres N, Santander J, Esquivel JP, Sabaté N, Figueras E, Ivanov P, Fonseca L, Gràcia I, Cané C (2008) Performance optimization of a passive silicon-based micro-direct methanol fuel cell. Sens Actuators B 132:540–544CrossRefGoogle Scholar
  21. Verjulio RW, Santander J, Sabaté N, Esquivel JP, Torres-Herrero N, Habrioux A, Alonso-Vante N (2014) Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell. Int J Hydrogen Energy 39:5406–5413CrossRefGoogle Scholar
  22. Wan J, Deng S-R, Yang R, Shu Z, Lu B-R, Xie S-Q, Chen Y, Huq E, Liu R, Qu X-P (2009) Silicon nanowire sensor for gas detection fabricated by nanoimprint on SU8/SiO2/PMMA trilayer. Microelectron Eng 86:1238–1242CrossRefGoogle Scholar
  23. Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, Ludwig R, Bergelin M, Gorton L, Shleev S (2012) Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens Bioelectron 31:219–225CrossRefGoogle Scholar
  24. Weinmueller C, Tautschnig G, Hotz N, Poulikakos D (2010) A flexible direct methanol micro-fuel cell based on metalized, photosensitive polymer film. J Power Sources 195:3849–3857CrossRefGoogle Scholar
  25. Williams JD, Wang W (2004) Study on the postbaking process and the effects on UV lithography of high aspect ratio SU-8 microstructures. J. Microlith Microfab Microsyst 3:563–568Google Scholar
  26. Yang R, Wang W (2005) A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures. Sensors Actuators B 110:279–288CrossRefGoogle Scholar
  27. Zhou M (2015) Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logical biosensing: a review. Electroanal 27:1786–1810CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • D. Dector
    • 1
  • J. M. Olivares-Ramírez
    • 2
  • V. M. Ovando-Medina
    • 3
  • A. Sosa Dominguez
    • 4
  • A. L. Villa
    • 5
  • A. Duarte-Moller
    • 1
  • N. Sabaté
    • 6
    • 7
  • J. P. Esquivel
    • 7
  • A. Dector
    • 8
    Email author return OK on get
  1. 1.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  2. 2.Universidad Tecnológica de San Juan del RíoSan Juan del RíoMexico
  3. 3.Coordinación Académica Región Altiplano (COARA)Universidad Autónoma de San Luis PotosíMatehualaMexico
  4. 4.Universidad Autónoma de Querétaro, facultad de QuímicaQuerétaroMexico
  5. 5.Facultad de Ingeniería, Departamento de Ingeniería Química, Grupo de Investigación de Catálisis AmbientalUniversidad de Antioquia UdeAMedellínColombia
  6. 6.Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
  7. 7.Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC)BarcelonaSpain
  8. 8.CONACYT, Universidad Tecnológica de San Juan del RíoSan Juan del RíoMexico

Personalised recommendations