Microsystem Technologies

, Volume 24, Issue 9, pp 3777–3782 | Cite as

Ultra-fast electro-optic switching control using a soliton pulse within a modified add-drop multiplexer

  • S. Soysouvanh
  • M. A. Jalil
  • I. S. Amiri
  • J. Ali
  • G. Singh
  • S. Mitatha
  • P. Yupapin
  • K. T. V. Grattan
  • M. Yoshida
Technical Paper


We have proposed the use of a soliton pulse that propagates within a modified add-drop filter, which is made of a GaAsInP/P material. It is in the form of a Panda-ring resonator, from which a bright/dark soliton pulse is input into a system via an input port. The conversion between bright and dark soliton pulses is introduced at the 3 dB coupler, i.e. the change in phase of π/2. But it is not superimposed each other. The output solitons obtained at the through and drop ports are bight and dark solitons respectively. Both signals can be used to form “ON’ and “OFF” or “1” and “0”, which are useful for the digital bit generation. The switching speed of the system can be improved by employing the two nonlinear side rings. In application, secure output bits can be arranged by using the alternative input solitons or the control ports, where the input bright and dark solitons can be converted into output bits. This means that the output bits can be randomly switched between “1” and “0”, which can be identified by the sender. Moreover, the additional information can be multiplexed via the add port and transmitted in either free space or optical fiber via the whispering gallery mode and through port outputs. Finally, the electro-optic switching can be transferred and the electronic switching by the embedded stacked layers, where the ultrafast switching of light input can lead the ultrafast electrical switching speed. The switching speed of ~ 5 fs and the offset time of ~ 220 fs of the “on” and OFF” are achieved by using the selected ring parameters.



The authors would like to give the appreciation for the research financial support by GUP Project (Tier2 15J57) and Flagship UTM Shine Project (03G82) to the Universiti Teknologi Malaysia, Johor Bahru, Malaysia. One of the authors “S. Soysouvanh” would like to give an acknowledgement to AUN-SEED-Net for a scholarship support in Ph.D. program.


  1. Agrawal A, Tiwari M, Azabi YO, Janyani V, Rahman BMA, Grattan KTV (2013) Ultrabroad supercontinuum generation in tellurite equiangular spiral photonic crystal fiber. J Mod Opt 60(12):956–962CrossRefGoogle Scholar
  2. Al J, Pornsuwancharoen P, Youplao P, Amiri IS, Chaiwong K, Chiangga S, Singh G, Yupapin P (2018) Coherent light squeezing states within a modified microring system. Results Phys (online) Google Scholar
  3. Amiri IS, Ali J, Yupapin PP (2012) Enhancement of FSR and finesse using add/drop filter and panda ring resonator. J Mod Phys B 26:1250034CrossRefGoogle Scholar
  4. Baccarani G, Ostoja P (1975) Electron mobility empirically related to the phosphorus concentration in silicon. Solid State Electron 18(6):579–580CrossRefGoogle Scholar
  5. Chen H, Nie R, Sun M, Deng W, Liang K (2017) 3-D electromagnetic analysis of single-phase tubular switched reluctance linear launcher. IEEE Trans Plasma Sci 45(7):1553–1560CrossRefGoogle Scholar
  6. Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119:085101CrossRefGoogle Scholar
  7. Hafez W, Feng M (2005) Experimental demonstration of pseudomorphic heterojunction bipolar transistors with cutoff frequencies above 600 GHz. Appl Phys Lett 86(15):152101CrossRefGoogle Scholar
  8. Hu Y, Ding W, Wang T, Li S, Yang S, Yin Z (2017) Investigation on a multimode switched reluctance motor: design, optimization, electromagnetic analysis, and experiment. IEEE Trans Ind Electron 64(12):9886–9895CrossRefGoogle Scholar
  9. Kejalakshmy NT, Grattan KTV, Rahman BMA (2016) Investigate of the optical modal properties of Al + 3 doped ZnO-coated Au waveguide for gas sensing applications using the finite element method. IEEE Sens J 16(5):1176–1181CrossRefGoogle Scholar
  10. Khedda ZD, Boughrara K, Dubas F, Ibtiouen R (2017) Nonlinear analytical prediction of the magnetic field and electromagnetic performances in switched reluctance machines. IEEE Trans Magn 53(7):8107311Google Scholar
  11. Kim SJ, Park MJ, Yun DJ, Lee WH, Kim GH, Yoon SM (2016) High performance and stable flexible memory thin-film transistor using In-Ga-Zn-O channel and ZnO charge-trap layers on poly(ethylene naphthalate) substrate. IEEE Trans Electron Devices 63(4):1557–1564CrossRefGoogle Scholar
  12. Kowsari A, Saghaei H (2018) Resonantly enhanced all-optical switching in microfibre Mach–Zehnder interferometers. Electron Lett 54(4):229–231CrossRefGoogle Scholar
  13. Ning C, Jin J, Yang K, Xie H, Wang DW, Liao Y, Wang LD, Chen HS, Li EP, Yin WY (2018) A novel electromagnetic bandgap power plane etched multiring CSRRs for suppressing simultaneous switching noise. IEEE Trans Electromagn Compat 60(3):733–737CrossRefGoogle Scholar
  14. Phatharaworamet T, Teeka C, Jomtarak R, Mitatha S, Yupapin PP (2010) Random binary code generation using dark-bright soliton conversion control within a Panda Ring resonator. J Lightwave Technol 28(19):2804–2809CrossRefGoogle Scholar
  15. Phattharacorn P, Chiangga S, Ali J, Yupapin P (2018) Micro-optical probe model using integrated triple microring resonators for vertical depth identification. Microsyst Technol (online) Google Scholar
  16. Pornsuwancharoen N, Amiri IS, Suhailin FH, Aziz MS, Ali J, Singh G, Yupapin P (2017a) Micro-current source generated by a WGM of light within a stacked silicon-graphene-Au waveguide. IEEE Photon Technol Lett 19:1768–1771CrossRefGoogle Scholar
  17. Pornsuwancharoen N, Youplao P, Amiri IS, Ali J, Yupapin P (2017b) Electron driven mobility model by light on the stacked metal-dielectric-interfaces. Microw Opt Technol Lett 59:1704–1709CrossRefGoogle Scholar
  18. Pornsuwancharoen N, Youplao P, Aziz MS, Ali J, Amiri IS, Punthawanunt S, Yupapin P, Grattan KTV (2018) In-situ 3D micro-sensor model using the embedded plasmonic island for biosensors. Microsyst Technol (online) Google Scholar
  19. Pornsuwancharoen N, Youplao P, Aziz MS, Ali J, Singh G, Amiri IS, Punthawanunt S, Yupapin P (2018) Characteristics of microring circuit using plasmonic island driven electron mobility. Microsyst Technol (online) Google Scholar
  20. Sato K (2018) Realization and application of large-scale fast optical circuit switch for data center networking. J Lightwave Technol 36(7):1411–1419CrossRefGoogle Scholar
  21. Shcherbakov MR, Vabishchevich PP, Shorokhov AS, Chong KE, Choi DY, Staude S, Miroshnichenko AE, Neshev DN, Fedyanin AA, Kivshar YS (2015) Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett 15:6985–6990CrossRefGoogle Scholar
  22. Xiao X, Xu Y, Guo H, Wang P, Cui X, Lu M, Wang Y, Peng B (2018) Theoretical modeling of 4.3 µm mid-infrared lasing in Dy3+ doped chalcogenide fiber lasers. IEEE Photon J 10(2):1501011Google Scholar
  23. Youplao P, Sarapat N, Pornsuwancharoen N, Chaiwong K, Jalil MA, Amiri IS, Aziz MS, Chiangga S, Singh G, Yupapin P, Grattan KTV (2018) Plasmonic op-amp circuit model using the inline successive microring pumping technique. Microsyst Technol, pp 1–7 (online) Google Scholar
  24. Zhang M, Wang Y, Li P, Wen H (2017) Comparative studies on two electromagnetic repulsion mechanisms for high-speed vacuum switch. IET Electr Power Appl 12(2):247–253CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Soysouvanh
    • 1
  • M. A. Jalil
    • 2
  • I. S. Amiri
    • 3
  • J. Ali
    • 4
  • G. Singh
    • 5
  • S. Mitatha
    • 1
  • P. Yupapin
    • 6
    • 7
  • K. T. V. Grattan
    • 8
  • M. Yoshida
    • 9
  1. 1.Department of Computer Engineering, Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Department of Physics, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Division of Materials Science and EngineeringBoston UniversityBostonUSA
  4. 4.Laser Center, IbnuSina Institute for Industrial and Scientific ResearchUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  5. 5.Department of Electronics and Communication EngineeringMalaviya National Institute of TechnologyJaipurIndia
  6. 6.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  7. 7.Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  8. 8.Department of Electrical and Electronic Engineering, School of Mathematics, Computer Science and EngineeringThe City, University of LondonLondonUK
  9. 9.Department of Embedded Technology, School of Information and Telecommunication EngineeringTokai UniversityTokyoJapan

Personalised recommendations