Advertisement

Plasmonic op-amp circuit model using the inline successive microring pumping technique

  • P. Youplao
  • N. Sarapat
  • N. Porsuwancharoen
  • K. Chaiwong
  • M. A. Jalil
  • I. S. Amiri
  • J. Ali
  • M. S. Aziz
  • S. Chiangga
  • G. Singh
  • P. Yupapin
  • K. T. V. Grattan
Technical Paper

Abstract

The electro-optic power pumping system model using the inline successive technique within the modified add-drop filter is proposed. A pumping system consists of a closed loop Panda ring resonator, from which the optical power is coupled inline into the system. By controlling the two side phase modulators, the whispering gallery mode (WGM) is generated by the amplitude-squeezed light within the modified add-drop filter. By using the proposed circuits, the low current can be applied into the system via a gold layer connection, from which the amplified output current can be obtained at the throughput port, which can be functioned as the electronic operational amplifier (op-amp). In application, the WGM output is the amplified signal that can be used for the up (down) link in free space communication network called light fidelity (LiFi). The electro-optic signals conversion can be performed by the stacked layers of silicon–graphene–gold materials. The results obtained have shown that large gain is obtained at the WGM output, which is ~ 5 × \(10^{ - 6}\; {\text{cm}}^{2} \;({\text{V}}\;{\text{sW}})^{ - 1}\), when the pumping saturation time is ~ 2 fs. It concludes the suitability of our proposed model for light fidelity, LiFi up-down link conversion.

Notes

Acknowledgements

The authors would like to give the appreciation for the research financial support by GUP project (Tier2 15J57) and Flagship UTM Shine Project (03G82) to the Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

References

  1. Aida K, Amemiya M (1984) Undersea transmission-system reliability with laser-diode standby-redundant optical repeaters. IEEE Trans Reliab R-33(5):439–441CrossRefGoogle Scholar
  2. Ali J, Youplao P, Pornsuwancharoen P, Aziz MS, Chiangga S, Amiri IS, Punthawanunt S, Singh G, Yupapin P (2018a) On-chip remote charger model using plasmonic island circuit. Results Phys (accepted) Google Scholar
  3. Ali J, Pornsuwancharoen N, Youplao P, Aziz MS, Chiangga S, Jaglan J, Amiri IS, Yupapin P (2018b) A novel plasmonic interferometry and the potential applications. Results Phys 8:438CrossRefGoogle Scholar
  4. Ali J, Pornsuwancharoen P, Youplao P, Amiri IS, Chaiwong K, Chiangga S, Singh G, Yupapin P (2018c) Coherent light squeezing states within a modified microring system. Results Phys.  https://doi.org/10.1016/j.rinp.2018.02.041 Google Scholar
  5. Amiri IS, Ali J, Yupapin PP (2012) Enhancement of FSR and finesse using add/drop filter and Panda ring resonator. J Mod Phys B 26:1250034CrossRefGoogle Scholar
  6. Arahira S, Watanabe K, Shinozaki K, Ogawa Y (1992) Successive excited-state absorption through a multistep process in highly Er3+ -doped fiber pumped by a 1.48-μm laser diode. Opt Lett 17(23):1679–1781CrossRefGoogle Scholar
  7. Baccarani G, Ostoja P (1975) Electron mobility empirically related to the phosphorus concentration in silicon. Solid State Electron 18(6):579–580CrossRefGoogle Scholar
  8. Basnayaka AD, Hass H (2017) Aggregate signal interference of downlink LiFi networks. In: GLOBECOM 2017—2017 IEEE global communications conference, pp 1–6Google Scholar
  9. Bogaerts W, Heyn PD, Vaerenbergh TV, Vos KD, Selvaraja SK, Claes T, Dumon P, Bienstman P, Thourhout DV, Baets R (2012) Silicon microring resonators. Laser Photon Rev 6(1):47–73CrossRefGoogle Scholar
  10. Chan CA, Attygalle M, Nirmalathas A (2010) Remote repeater-based EPON with MAC forwarding for long-reach and high-split-ratio passive optical networks. IEEE/OSA J Opt Commun Netw 2(1):28–37CrossRefGoogle Scholar
  11. Elkouss D, Mateo JM, Ciurana A, Martin V (2013) Secure optical networks based on quantum key distribution and weakly trusted repeaters. IEEE/OSA J Opt Commun Netw 5(4):316–318CrossRefGoogle Scholar
  12. Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119:085101CrossRefGoogle Scholar
  13. Liu M, Luo A-P, Yan Y-R, Hu S, Liu Y-C, Cui H, Luo Z-C, Xu W-C (2016) Successive soliton explosions in an ultrafast fiber laser. Opt Lett 41(6):1181–1184CrossRefGoogle Scholar
  14. Masuda H, Kuwahara S, Kawakami H, Hirano A, Miyamoto Y, Mori A, Sakamoto T (2004) Ultra-wideband remotely-pumped EDF/DRA hybrid inline-repeater system using tellurite-based EDFs and 1500-nm pumping method. Technical digest (CD) (Optical Society of America, 2004), paper OWB2Google Scholar
  15. Mitatha S, Pornsuwancharoen N, Yupapin PP (2009) A simultaneous short-wave and millimeter wave generation using a soliton pulse within a nano-waveguide. IEEE Photon Lett 21(13):932–934CrossRefGoogle Scholar
  16. Nadarajah N, Chae C-J, Tran AV, Nirmalathas A (2009) Optical layer local area network emulation in a multifunctional repeater-based optical access network. IEEE/OSA J Opt Commun Netw 1(1):43–49CrossRefGoogle Scholar
  17. Phatharacorn P, Chiangga S, Yupapin P (2016) Analytical and simulation results of a triple micro whispering gallery mode probe system for a 3D blood flow rate sensor. Appl Opt 55(33):009504CrossRefGoogle Scholar
  18. Phatharaworamet T, Teeka C, Jomtarak R, Mitatha S, Yupapin PP (2010) Random binary code generation using dark-bright soliton conversion control within a Panda Ring resonator. J Lighwave Technol 28(19):2804–2809CrossRefGoogle Scholar
  19. Phattharacorn P, Chiangga S, Ali J, Yupapin P (2018) Micro-optical probe model using integrated triple microring resonators for vertical depth identification. In: Microsystem and technologies (in press) Google Scholar
  20. Pornsuwancharoen N, Amiri IS, Suhailin FH, Aziz MS, Ali J, Singh G, Yupapin P (2017a) Micro-current source generated by a WGM of light within a stacked silicon–graphene–Au waveguide. IEEE Photon Technol Lett 19:1768–1771CrossRefGoogle Scholar
  21. Pornsuwancharoen N, Youplao P, Amiri IS, Ali J, Yupapin P (2017b) Electron driven mobility model by light on the stacked metal–dielectric-interfaces. Microw Opt Technol Lett 59:1704–1709CrossRefGoogle Scholar
  22. Pornsuwancharoen N, Youplao P, Aziz MS, Ali J, Singh G, Amiri IS, Punthawanunt S, Yupapin P (2018a) Characteristics of microring circuit using plasmonic island driven electron mobility. In: Microsystem technologies, pp 1–5Google Scholar
  23. Pornsuwancharoen N, Youplao P, Aziz MS, Ali J, Amiri IS, Punthawanunt S, Yupapin P, Grattan KTV (2018b) In-situ 3D micro-sensor model using embedded plasmonic island for biosensors. In: Microsystem and technologies (in press) Google Scholar
  24. Pornsuwancharoen N, Youplao P, Aziz MS, Ali J, Amiri IS, Punthawanunt S, Yupapin P, KTV, Grattan KTV (2018c) In-situ 3D micro-sensor model using embedded plasmonic island for biosensors. In: Microsystem technologies (in press) Google Scholar
  25. Wang Y, Wu X, Hass H (2016) Analysis of area data rate with shadowing effects in Li–Fi and RF hybrid network. In: 2016 IEEE international conference on communications (ICC), pp 1–5Google Scholar
  26. Wang Y, Basayaka DA, Wu X, Pass H (2017) Optimization of load balancing in hybrid LiFi/RF networks. IEEE Trans Commun 65(4):1708–1720CrossRefGoogle Scholar
  27. Wu X, Pass H (2017) Access point assignment in hybrid LiFi and WiFi networks in consideration of LiFi channel blockage. In: 2017 IEEE 18th international workshop on signal processing advances in wireless communications (SPAWC), pp 1–5Google Scholar
  28. Wu X, Safari M, Hass H (2017) Joint optimization of load balancing and handover for hybrid LiFi and WiFi networks. In: 2017 IEEE wireless communications and networking conference (WCNC), pp 1–5Google Scholar
  29. Zhou L, You H-H, Pu X-Y (2011) Broadening free spectral range of an evanescent-wave pumped whispering-gallery-mode fiber fibre laser by Vernier effect. Opt Commun 284(13):3387–3390CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Youplao
    • 1
  • N. Sarapat
    • 2
  • N. Porsuwancharoen
    • 1
  • K. Chaiwong
    • 3
  • M. A. Jalil
    • 4
  • I. S. Amiri
    • 5
  • J. Ali
    • 6
  • M. S. Aziz
    • 6
  • S. Chiangga
    • 7
  • G. Singh
    • 8
  • P. Yupapin
    • 9
    • 10
  • K. T. V. Grattan
    • 11
  1. 1.Department of Electronics Engineering, Faculty of Industry and TechnologyRajamangala University of Technology IsanSakon NakhonThailand
  2. 2.Faculty of Science and TechnologyThepsatri Rajabhat UniversityLopburiThailand
  3. 3.Faculty of Industrial TechnologyLeoi Rajabhat UniversityLeoiThailand
  4. 4.Department of Physics, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
  5. 5.Division of Materials Science and EngineeringBoston UniversityBostonUSA
  6. 6.Laser Center, IbnuSina Institute for Industrial and Scientific ResearchUniversitiTeknologi Malaysia (UTM)Johor BahruMalaysia
  7. 7.Department of Physics, Faculty of ScienceKasetsart UniversityBangkokThailand
  8. 8.Department of Electronics and Communication EngineeringMalaviya National Institute of Technology JaipurJaipurIndia
  9. 9.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  10. 10.Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  11. 11.Department of Electrical and Electronic Engineering, School of Mathematics, Computer Science and EngineeringThe City, University of LondonLondonUK

Personalised recommendations