Microsystem Technologies

, Volume 24, Issue 9, pp 3631–3635 | Cite as

In-situ 3D micro-sensor model using embedded plasmonic island for biosensors

  • N. Pornsuwancharoen
  • P. Youplao
  • M. S. Aziz
  • J. Ali
  • I. S. Amiri
  • S. Punthawanunt
  • P. YupapinEmail author
  • K. T. V. Grattan
Technical Paper


The design of the microsensor system for biosensors using the plasmonic island is proposed. The sensor head is formed by the stacked layers of silicon-graphene-gold materials. The dual-mode operations of the sensor can be performed using the relationship of the changes between the electron mobility and optical phase, where the exciting environment can be light intensity (phase), electrical transient, heat, pressure, flavour and smoke, The change in light phase (intensity) in silicon and conductivity (mobility) in gold layers cause change in the output measurands. The design and simulation interpretation of the sensor is presented. The sensor manipulation using the MCM arrangement is simulated and interpreted for biosensor applications 3D imaging can also be applied to the MCM function, where the 3D in situ sensor function is possible. The sensor sensitivity of 2.0 × 10−21 cm2 V−1 s−1 (mW)−1 via simulation is obtained.



M. S. Aziz would like to acknowledge the support and facilities through Flagship UTM Shine Project (03G82). P. Yupapin would like to acknowledge for the research facilities to Ton Duc Thang University, Vietnam. This is Prof. Ali UTM Shine cost center number is Q.J130000.2426.03G82 (Flagship UTM Shine).


  1. Aldawsari S, Wei L, Liu WK (2015) Theoretical study of hybrid guided modes in a multilayer symmetrical planar plasmonic waveguide. J Lightwave Technol 33(15):3198–3206CrossRefGoogle Scholar
  2. Ali J, Pornsuwancharoen N, Youplao P, Aziz MS, Chiangga S, Jaglan J, Amiri IS, Yupapin P (2018) A novel plasmonic interferometry and the potential applications. Results Phys 8:438–441CrossRefGoogle Scholar
  3. Amiri IS, Ali J, Yupapin PP (2012) Enhancement of FSR and finesse using add/drop filter and panda ring resonator. J Mod Phys B 26:1250034CrossRefGoogle Scholar
  4. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):422–453CrossRefGoogle Scholar
  5. Baccarani G, Ostoja P (1975) Electron mobility empirically related to the phosphorus concentration in silicon. Solid State Electron 18(6):579–580CrossRefGoogle Scholar
  6. Bogaerts W, Heyn PD, Vaerenbergh TV, Vos KD, Selvaraja SK, Claes T, Dumon P, Bienstman P, Thourhoout DV, Baets R (2012) Silicon microring resonators. Laser Photonics Rev 6(1):47–73CrossRefGoogle Scholar
  7. Chaiwong K, Tamee K, Punthawanunt S, Suhailin FH, Aziz MS, Ali J, Singh G, Yupapin P (2017) Naked-eye 3D imaging model using the embedded micro-conjugate mirrors within the medical micro-needle device. Microsyst Technol. Google Scholar
  8. Eurenius L, Hagglund C, Olsson E, Kasemo B, Chakarov D (2008) Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes. Nat Photonics 2:360–364CrossRefGoogle Scholar
  9. Faruki MJ, Razak MZA, Azzuhri SR, Rahman MT, Soltanian MRK, Rahman BMA, Grattan KTV, Rue RDL, Ahmad H (2016) Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement. Mater Express 6:501–508CrossRefGoogle Scholar
  10. Felidj N, Laurent G, Aubard J, Levi G, Hohenau FA, Krenn JR, Aussenegg FR (2005) Grating-induced plasmon mode in gold nanoparticle. J Chem Phys 123(22):221103CrossRefGoogle Scholar
  11. Feng JV, Siu S, Roelke A, Mehta V, Rhieu SY, Tayhas G, Palmore R, Pacifici D (2011) Nanoscaleplasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano Lett 12(2):602–609. CrossRefGoogle Scholar
  12. Foreman MR, Swaim JD, Vollmer F (2015) Whispering gallery mode sensors. Adv Opt Photonics 7:168–240CrossRefGoogle Scholar
  13. Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119:085101CrossRefGoogle Scholar
  14. Hasan MdR, Akter S, Rifat AA, Ahmed K, Ahmed R, Subbaraman H, Abbott D (2018) Spiral photonics crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens J 18(1):133–140CrossRefGoogle Scholar
  15. He L, Ozdemir SK, Zhu J, Kim W, Yang L (2011) Detection single viruses and nanoparticles using whispering gallery microlasers. Nat Nanotechnol 6:428–432CrossRefGoogle Scholar
  16. Hourhout DV, Baets R (2012) Silicon micro-ring resonators. Laser Photon Rev 6910:47–73Google Scholar
  17. Lee MY, Jackson AO, Lee LK (2015) Bioinspired optical antennas: gold plant viruses. Light Sci Appl 4:e267CrossRefGoogle Scholar
  18. Li D, Feng J, Pacifici D (2016) Nanoscale optical interferometry with incoherent light. Sci Rep 2016:Article number 20836CrossRefGoogle Scholar
  19. Morrill D, Li D, Pacifici D (2010) Measuring subwavelength spatial coherence with plasmonic interferometry. Nat Photonics 10:661–687Google Scholar
  20. Ozbay E (2006) Plasmonics: merging photonics and electronics at the nanoscale dimensions. Science 311(5738):189–193CrossRefGoogle Scholar
  21. Phatharacorn P, Chiangga S, Yupapin P (2016) Analytical and simulation results of a triple micro whispering gallery mode probe system for a 3D blood flow rate sensor. Appl Opt 55(33):9504–9513CrossRefGoogle Scholar
  22. Phatharaworamet T, Teeka C, Jomtarak R, Mitatha S, Yupapin PP (2010) Random binary code generation using dark-bright soliton conversion control within a Panda Ring resonator. J Lightwave Technol 28(19):2804–2809CrossRefGoogle Scholar
  23. Phattharacorn P, Chiangga S, Ali J, Yupapin P (2018) Micro-optical probe model using integrated triple microring resonators for vertical depth identification. Microsyst Technol (accepted) Google Scholar
  24. Pornsuwancharoen N, Youplao P, Amiri IS, Yupapin P (2017a) Electron driven mobility model by light on the stacked metal-dielectric-interfaces. Microw Opt Technol Lett 59(7):1704–1709CrossRefGoogle Scholar
  25. Pornsuwancharoen N, Amiri IS, Suhailin FH, Aziz MS, Ali J, Singh G, Yupapin P (2017b) Micro-current source generated by a WGM of light within a stacked silicon-graphene-Au waveguide. IEEE Photonics Technol Lett 29(21):1768–1771CrossRefGoogle Scholar
  26. Ren-Bing T, Hua Q, Xiao-Yu Z, Wen X (2013) Electronics driven plasmon dispersion in AlGaN/GaN high electron mobility transistors. Chin Phys B 22(11):117306CrossRefGoogle Scholar
  27. Sharma AK, Dominic A (2018) Influence of chemical potential on graphene-based SPR sensor’s performance. IEEE Photonics Technol Lett 30(1):95–98CrossRefGoogle Scholar
  28. Wang W, Ku Y (2003) The light transmission and distribution in an optical fiber coated with TiO2 particles. Chemosphere 50(8):999–1006CrossRefGoogle Scholar
  29. Xiao JJ, Yakubo K, Yu KW (2006) Optical switching in graded plasmonic waveguides. Appl Phys Lett 88:241111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. Pornsuwancharoen
    • 1
  • P. Youplao
    • 1
  • M. S. Aziz
    • 2
  • J. Ali
    • 2
  • I. S. Amiri
    • 3
  • S. Punthawanunt
    • 4
  • P. Yupapin
    • 5
    • 6
    Email author
  • K. T. V. Grattan
    • 7
  1. 1.Department of Electronics Engineering, Faculty of Industry and TechnologyRajamangala University of Technology Isan, Sakon Nakhon CampusSakon NakhonThailand
  2. 2.Physics Department, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Division of Materials Science and EngineeringBoston UniversityBostonUSA
  4. 4.Interdisciplinary Research Center, Faculty of Science and TechnologyKasem Bundit UniversityBangkokThailand
  5. 5.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  6. 6.Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  7. 7.Department of Electrical and Electronic Engineering, School of Mathematics, Computer Science and Engineering, CityUniversity of LondonLondonUK

Personalised recommendations