Fin shape influence on analog and RF performance of junctionless accumulation-mode bulk FinFETs
- 52 Downloads
Abstract
The non-planar 3D structure of multi-gate FinFETs makes them able to be scaled down to 20 nm and beyond and also have greater performance. But any variation of the fin cross-sectional shape has an impact on the device performance. In this paper, the impact of various fin cross-sectional shape on junctionless accumulation mode bulk FinFETs with thin fins and short channel length has been evaluated. Different important device performance parameters such as ON-current (ION), OFF current (IOFF), ratio of ON/OFF current, Threshold voltage (Vth), Subthreshold swing (SS), drain-induced barrier lowering (DIBL), transconductance (gm), transconductance generation factor (gm/Ids), cut-off frequency (fT), and maximum oscillation frequency (fmax) is evaluated for different fin shapes and analyzed. From the analysis, it is understood that shape of the fin cross-section has substantial impact on performance of the device. Improvement in SCEs was noticed in terms of ~ 25% reduction of DIBL and ~ 10% reduction in SS for the device with reduced fin top width. On the other hand, reduced fin top width degrades the RF performance as maximum frequency of oscillation decrease by ~ 10%. An optimal fin structure for the junctionless bulk FinFET is also obtained to have better SCEs and reasonable Analog/RF applications.
References
- ATLAS (2011) ATLAS user manual. Silvaco Int., Santa Clara (online). http://www.silvaco.com
- Choi JH, Kim TK, Moon JM, Yoon YG, Hwang BW, Kim DH, Lee S-H (2014) Origin of device performance enhancement of junctionless accumulation-mode (JAM) bulk FinFETs with high-κ gate spacers. IEEE Electron Device Lett 35(12):1182–1184CrossRefGoogle Scholar
- Colinge J-P et al (2010) Reduced electric field in junctionless transistors. Appl Phys Lett 96(7):073510CrossRefGoogle Scholar
- Crupi F, Alioto M, Franco J, Magnone P, Togo M, Horiguchi N, Groeseneken G (2012) Understanding the basic advantages of bulk FinFETs for sub- and near-threshold logic circuits from device measurements. In: IEEE transactions on circuits and systems—II: express briefs, vol 59, no 7Google Scholar
- Doria RT et al (2011) Junctionless multiple-gate transistors for analog applications. IEEE Trans Electron Devices 58(8):2511–2519CrossRefGoogle Scholar
- Duarte JP, Paydavosi N, Venugopalan S, Sachid A, Hu C (2013) Unified FinFET compact model: modelling trapezoidal triple-gate FinFETs. In: International conference on simulation of semiconductor processes and devices (SISPAD), Glasgow, pp 135–138Google Scholar
- Dubey Shashank, Kondekar Pravin N (2016) Fin shape dependent variability for strained SOI FinFETs. Microelectron Eng 162(16):63–68CrossRefGoogle Scholar
- Gaynor BD, Hassoun S (2014) Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. IEEE Trans Electron Devices 61(8):2738–2744CrossRefGoogle Scholar
- Guin S, Sil M, Mallik A (2017) Comparison of logic performance of CMOS circuits implemented with junctionless and inversion-mode FinFETs. IEEE Trans Electron Devices 64(3):1366–1374CrossRefGoogle Scholar
- Ha D, Takeuchi H, Choi Y-K, King T-J (2004) Molybdenum gate technology for ultrathin-body MOSFETs and FinFETs. IEEE Trans Electron Devices 51(12):1989–2004CrossRefGoogle Scholar
- Hsu T-H, Lue H-T, Lai E-K, Hsieh J-Y, Wang Z-Y, Yang L-W, King Y-C, Yang T, Chen K-C,Hsieh K-Y, Liu R, Lu C-Y (2007) A high-speed BE-SONOS NAND flash utilizing the field enhancement effect of FinFET. In: IEDM technical digest, pp 913–916Google Scholar
- Huang AP, Yang ZC, Chu PK (2010) Hafnium-based high-k gate dielectrics. In: Chu PK (ed) Advances in solid state circuit technologies, ISBN: 978-953-307-086-5Google Scholar
- Jan CH et al (2012) A 22 nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. In: 2012 International electron devices meeting, San Francisco, pp 3.1.1–3.1.4Google Scholar
- Kim J, Huynh HA, Kim S (2017) Modeling of FinFET parasitic source/drain resistance with polygonal epitaxy. IEEE Trans Electron Devices 64(5):2072–2079CrossRefGoogle Scholar
- Lee C-W et al (2010) Low subthreshold slope in junctionless multigate transistors. Appl Phys Lett 96(10):102106CrossRefGoogle Scholar
- Manoj CR, Rao VR (2007) Impact of high-k gate dielectrics on the device and circuit performance of nanoscale FinFETs. IEEE Electron Device Lett 28(4):295–297CrossRefGoogle Scholar
- Md Rezali FA, Othman NAF, Mazhar M, Wan Muhamad Hatta S, Soin N (2016) Performance and device design based on geometry and process considerations for 14/16-nm strained FinFETs. IEEE Trans Electron Devices 63(3):974–981CrossRefGoogle Scholar
- Mohankumar N, Syamal B, Sarkar CK (2010) Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans Electron Devices 57(4):820–826CrossRefGoogle Scholar
- Park T, Cho HJ, Chae JD, Han SY, Park D, Kim K, Yoon E, Lee JH (2006) Characteristics of the full CMOS SRAM cell using body-tied TG MOSFETs (bulk FinFETs). IEEE Trans Electron Devices 53(3):481–487CrossRefGoogle Scholar
- Raskin J-P, Chung TM, Kilchytska V, Lederer D, Flandre D (2006) Analog/RF performance of multiple gate SOI devices: wideband simulations and characterization. IEEE Trans Electron Devices 53(5):1088–1095CrossRefGoogle Scholar
- Rewari S, Nath V, Haldar S et al (2017) Hafnium oxide based cylindrical junctionless double surrounding gate (CJLDSG) MOSFET for high speed, high frequency digital and analog applications. Microsyst Technol. https://doi.org/10.1007/s00542-017-3436-3 Google Scholar
- Rosner W, Landgraf E, Kretz J, Dreeskornfeld L, Schafer H, Stalele M, Schulz T, Hofmann F, Luyken RJ, Specht M, Hartwich J, Pamler W, Risch L (2004) Nanoscale FinFETs for low power applications. Solid-State Electron 48(10–11):1819–1823CrossRefGoogle Scholar
- Sachid AB, Chen M-C, Hu C (2016) FinFET with high-κ spacers for improved drive current. IEEE Electron Device Lett 37(7):835–838CrossRefGoogle Scholar
- Sahay S, Kumar MJ (2017) Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans Electron Devices 64(3):1330–1335CrossRefGoogle Scholar
- Seoane N et al (2016) Comparison of fin-edge roughness and metal grain work function variability in InGaAs and Si FinFETs. IEEE Trans Electron Devices 63(3):1209–1216CrossRefGoogle Scholar
- Sikarwar V, Khandelwal S, Akashe S (2013) Analysis and design of low power SRAM cell using independent gate FinFET. Radioelectron Commun Syst 56(9):434–440CrossRefGoogle Scholar
- Sung PJ et al (2017) High-performance uniaxial tensile strained n-channel JL SOI FETs and triangular JL bulk FinFETs for nanoscaled applications. IEEE Trans Electron Devices 64(5):2054–2060MathSciNetCrossRefGoogle Scholar
- The International Technology Roadmap for Semiconductors (online). http://www.itrs.net
- Trivedi N, Kumar M, Haldar S et al (2017) Assessment of analog RF performance for insulated shallow extension (ISE) cylindrical surrounding gate (CSG) MOSFET incorporating gate stack. Microsystem technology, pp 1–8. https://doi.org/10.1007/s00542-017-3456-z
- Wang L et al (2014) 3D coupled electro-thermal FinFET simulations including the fin shape dependence of the thermal conductivity. In: International conference on simulation of semiconductor processes and devices (SISPAD), Yokohama, pp 269–272Google Scholar
- Xu W, Yin H, Ma X, Hong P, Xu M, Meng L (2015) Novel 14-nm scallop-shaped FinFETs (S-FinFETs) on bulk-Si substrate. Nanoscale Res Lett 10(249):1–7Google Scholar
- Yu Z, Chang S, Wang H, He J, Huang Q (2015) Effects of Fin shape on sub-10 nm FinFETs. J Comput Electron 14(2):515–523CrossRefGoogle Scholar
- Zhang J, Si M, Lou XB, Wu W, Gordon RG, Ye PD (2015) InGaAs 3D MOSFETs with drastically different shapes formed by anisotropic wet etching. In: 2015 IEEE international electron devices meeting (IEDM), Washington, DC, pp 15.2.1–15.2.4Google Scholar
- Zhang J, Si M, Lou XB, Wu W, Gordon RG, Ye PD (2015) InGaAs 3D MOSFETs with drastically different shapes formed by anisotropic wet etching. In: IEEE international electron devices meeting (IEDM)Google Scholar