Advertisement

Gain improvement of tunable band-notched UWB antenna using metamaterial lens for high speed wireless communications

  • Wael A. E. AliEmail author
  • Hesham A. Mohamed
  • Ahmed A. Ibrahim
  • Mohamed Z. M. Hamdalla
Technical Paper
  • 59 Downloads

Abstract

This paper introduces design of UWB antenna with gain improvement using single layer of metamaterial structure. The proposed UWB antenna consists of circular patch with stepped cuts and curvature in ground plane to achieve the desired matched impedance from 3.1 GHz up to 12 GHz. In order to achieve a notched frequency band from 5.7 to 5.9 for interference mitigation with WLAN applications, an omega structure is etched in the radiating patch. Lumped capacitor is inserted in omega structure to tune the notched frequency from 5.7 GHz (WLAN band) to 3.8 GHz (WiMAX band). The gain of UWB antenna is improved by adding single array layer with 3 × 2 inverted L-shaped metamaterial unit cells. The single layer metamaterial can modify the radiation pattern of the UWB antenna by enhancing its gain. This enhancement is due to the negative characteristics of the metamaterial structure which behaves as super lens when placed in front of the antenna as a cover. The realized gain is increased up to 5.5 dB within the achieved frequency range except the frequency band of the notch. The performance of the antenna is confirmed by the measured analysis with good agreement when compared with the simulated ones.

Notes

References

  1. Abdalla MA, Ibrahim AA (2015) Multi-band meta-material antenna with asymmetric coplanar strip-fed structure. In: Symposium on antennas and propagation & USNC/URSI national radio science meeting, 2015Google Scholar
  2. Abdalla MA, Ibrahim AA, Abd El-Azeem MH (2015) Phase enhancement for multi-resonance compact metamaterial antennas. Prog Electromagn Res 60:83–93CrossRefGoogle Scholar
  3. Abdel-Rahman AB, Ibrahim AA (2016) Metamaterial enhances microstrip antenna gain. Microw RF J 7:46–50Google Scholar
  4. Ali W, Ibrahim AA (2017) A compact double-sided MIMO antenna with an improved isolation for UWB applications. Int J Electron Commun 82:7–13CrossRefGoogle Scholar
  5. Ali WAE, Moniem RMA (2017) Frequency Reconfigurable triple band-notched ultra-wideband antenna with compact size. Prog Electromagn Res 73:37–46CrossRefGoogle Scholar
  6. Ali W, Ibrahim AA, Machac J (2017a) Compact size UWB monopole antenna with triple band-notches. Radioeng J 26(1):57Google Scholar
  7. Ali WA, Hamad EKI, Bassiuny MA, Hamdallah MMM (2017b) Complementary split ring resonator based triple band microstrip antenna for WLAN/WiMAX applications. Radioengineering 26(1):78–84CrossRefGoogle Scholar
  8. Alu A, Bilotti F, Engheta N, Vegni L (2006) Metamaterial covers over a small aperture. IEEE Trans Antenna Propag 54(6):1632–1642CrossRefGoogle Scholar
  9. Beruete M, Navarro-Ca M, Sorolla M, Campillo I (2008) Planoconcave lens by negative refraction of stacked subwavelength hole arrays. Opt Express 16:9677–9683CrossRefGoogle Scholar
  10. Boutejdar A, Ibrahim AA, Burte EP (2015) Novel microstrip antenna aims at UWB applications. Microw RF 7:8–14Google Scholar
  11. Cai YZ, Yang HC, Cai LY (2014) Wideband monopole antenna with three band-notched characteristics. IEEE Antennas Wirel Propag Lett 13:607–610CrossRefGoogle Scholar
  12. Caloz C, Itoh T (2004) Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line. IEEE Trans Antennas Propag 52:1159–1166CrossRefGoogle Scholar
  13. Chen H, Wu BI, Ran L, Grzegorczyk TM, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70(1):016608–0166015CrossRefGoogle Scholar
  14. Cheng Q, Jiang WX, Cui TJ (2011) Multi-beam generations at predesigned directions based on anisotropic zero-index metamaterials. Appl Phys Lett 99(13):131 913/1–131 913/3CrossRefGoogle Scholar
  15. Eleftheriades GV, Iyer AK, Kremer PC (2002) Planar negative refractive index media using periodically LC loaded transmission lines. IEEE Trans Microw Theory Tech 50:2702–2712CrossRefGoogle Scholar
  16. Federal Communications Commission, (2002) First report and order, “revision of part 15 of the commission’s rule regarding ultra-wideband transmission system FCC 02-48,”Google Scholar
  17. Hamad EKI, Ali WAE , Hamdalla MZM, Bassiuny MA (2018) High gain triple band microstrip antenna based on metamaterial super lens for wireless communication applications. In: 2018 international conference on innovative trends in computer engineering (ITCE), Aswan, 2018, pp 197–204Google Scholar
  18. Ibrahim AA, Abdalla MA (2016) CRLH MIMO Antenna with reversal configuration. AEU Int J Electron Commun 70:1134–1141CrossRefGoogle Scholar
  19. Ibrahim AA, Hamed HFA, El-Din MA, Abdel-alla A, Yahia E (2014) A compact planer UWB antenna with band-notched characteristics. In: ICET 2014, pp 1–4Google Scholar
  20. Ibrahim A, Abdel-Rahman A, Abdalla M (2014) Design of third order band pass filter using coupled meta-material resonators. In IEEE AP-S International Antenna and Propagation Symposium Digest, Memphis, USA, 6–11 July, 2014, pp 1702–1703Google Scholar
  21. Ibrahim AA, Abdalla MA, Boutejdar A (2016) Hybrid technique delivers dual-notch UWB antenna. Microw RF J 55(4):56–60Google Scholar
  22. Ibrahim AA, Abdalla MA, Hu Z (2017a) Design of a compact MIMO antenna with asymmetric coplanar strip-fed for UWB applications. Microw Opt Technol Lett 59(1):31–36CrossRefGoogle Scholar
  23. Ibrahim AA, Abdalla MA, Boutejdar A (2017b) A printed compact band-notched antenna using octagonal radiating patch and meander slot technique for UWB applications. Prog Electromagn Res 54:153–162CrossRefGoogle Scholar
  24. Ibrahim AA, Ali W, Machac J (2017c) UWB monopole antenna with band notched characteristics mitigating interference with WiMAX. Radioeng J 26(2):439Google Scholar
  25. Ibrahim AA, Abdalla MA, Budimir D (2017d) Coupled CRLH transmission lines for compact and high selective bandpass filters. Microw Opt Technol Lett 59(6):1248–1251CrossRefGoogle Scholar
  26. Jiang ZH, Gregory M, Werner DH (2011) Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission. Phys Rev B 84:165 111/1–165 111/6Google Scholar
  27. Lipworth G, Ensworth J, Seetharam K, Huang D, Lee JS, Schmalenberg P, Nomura T, Reynolds MS, Smith DR, Urzhumov Y (2014) Magnetic metamaterial superlens for increased range wireless power transfer. Sci Rep 4:3642CrossRefGoogle Scholar
  28. Liu Zhenzhe, Wang Peng, Zeng Zhiyi (2013) Enhancement of the gain for microstrip antennas using negative permeability metamaterial on low temperature co-fired ceramic (LTCC) substrate. IEEE Antennas Wirel Propag Lett 12:429–432CrossRefGoogle Scholar
  29. Mohamed HA, Elkorany AS, Saad SA, Saleeb DA (2017) New simple flower shaped reconfigurable band-notched UWB antenna using single varactor diode. Prog Electromagn Res 76:197–206CrossRefGoogle Scholar
  30. Navarro-Ca M, Beruete M, Sorolla M, Campillo I (2008) Negative refraction in a prism made of stacked subwavelength hole arrays. Opt Express 16:560–566CrossRefGoogle Scholar
  31. Oliner AA (2003) A planar negative-refractive-index medium without resonant elements. In: IMS international microwave symposium, Philadelphia, USA, 2003, pp 191–194Google Scholar
  32. Reddy GS, Kamma A, Mishra SK, Mukherjee J (2014) Compact bluetooth/UWB dual-band planar antenna with quadruple band-notch characteristics. IEEE Antennas Wirel Propag Lett 13:872–875CrossRefGoogle Scholar
  33. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187CrossRefGoogle Scholar
  34. Sultan KS, Dardeer OMA, Mohamed HA (2017) Design of compact dual notched self-complementary UWB antenna. Open J Antennas Propag 5:99–109CrossRefGoogle Scholar
  35. Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313(5793):1595CrossRefGoogle Scholar
  36. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and µ. Sov Phys Uspekhi 10(4):509–514CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electronics and Communications Engineering DepartmentArab Academy for Science, Technology and Maritime Transport (AASTMT)AlexandriaEgypt
  2. 2.Electronics Research InstituteGizaEgypt
  3. 3.Electronics and Communications Engineering Department, Faculty of EngineeringMinia UniversityMiniaEgypt
  4. 4.Computer Science and Electrical Engineering DepartmentUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations