Advertisement

Microsystem Technologies

, Volume 23, Issue 12, pp 5491–5503 | Cite as

A new modulation method to generate all-optical logic gates in an AOTF

  • M. V. N. Oliveira
  • A. G. CoelhoJr
  • C. S. Sobrinho
  • A. C. Ferreira
  • J. C. Sales
  • J. R. R. SousaEmail author
  • G. F. Guimarães
  • J. W. M. Menezes
  • M. L. Lyra
  • A. S. B. Sombra
Technical Paper

Abstract

We propose a new method of optical modulation using a conventional acousto-optic tunable filter. In this device the all-optical logic gates, namely AND and OR, are obtained by simultaneously operation of optical double sideband (ODSB) modulation and a pulse position frequency domain modulation (PPFDM). This device shall operate with ultrashort soliton light pulses 100 ps. In this way, a pulse will carry two bits of information after been encoded by the modulation proposed here. We then analyze the modulation ODSB—PPFDM for input pulses, polarized in the two input modes, allowing a variation in the modulation parameter for each input pulse. A phase difference Δϕ = π rad was considered between both input pulses, it was obtained the occurrence of an AND (OR) logical gate at lower (upper) sideband of the TE output pulse as well as at upper (lower) sideband of the TM output pulse.

Keywords

Soliton Logical Gate Output Pulse Transverse Magnetic Input Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the Brazilian Agencies, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FUNCAP (Fundação Cearense de Amparo a Pesquisa), FINEP (Financiadora de Estudos e Projetos), and FAPEAL (Fundação de Apoio à Pesquisa do Estado de Alagoas) for the financial support.

References

  1. Alvarado A, Agrell E (2015) Four-dimensional coded modulation with bit-wise decoders for future optical communications. J Lightwave Technol 33(10):1993–2003CrossRefGoogle Scholar
  2. Bhatti A, Al-Raweshidy HS, Murtaza G (2000) Optical response of a D-fiber antenna in a finite-element analysis intended for radio-over-fiber applications. Appl Opt 39(21):3626–3631CrossRefGoogle Scholar
  3. Ferreira AC, Sobrinho CS, Menezes JWM, Fraga WB, Rocha HHB, Wirth A, Jr L, Sabóia KDA, Guimarães GF, Filho JMS, Sombra ASB (2009) A performance study of an all-optical logic gate based in PAM–ASK. J Mod Opt 56(8):1004–1013CrossRefzbMATHGoogle Scholar
  4. Ferreira AC, Costa MBC, Coêlho AG Jr, Sobrinho CS, Lima JLS, Menezes JWM, Lyra ML, Sombra ASB (2012) Analysis of the nonlinear optical switching in a Sagnac interferometer with non-instantaneous Kerr effect. Opt Commun 285(6):1408–1417CrossRefGoogle Scholar
  5. Fice MJ, Rouvalis E, Dijk FV, Accard A, Lelarge F, Renaud CC, Carpintero G, Seeds AJ (2012) 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system. Opt Express 20(2):1769–1774CrossRefGoogle Scholar
  6. Gupta N, Voloshinov VB, Knyazev GA, Kulakova LA (2012) Tunable wide-angle acousto-optic filter in single-crystal tellurium. J Opt 14(3):035502CrossRefGoogle Scholar
  7. Huiszoon B, Spuesens T, Tangdiongga E, de Waardt H, Khoe GD, Koonen AMJ (2009) Hybrid radio-over-fiber and ocdma architecture for fiber to the personal area network. J Lightwave Technol 27(12):1904–1911CrossRefGoogle Scholar
  8. Islam AHMR, Bakaul M, Nirmalathas A, Town GE (2012) Simplification of millimeter-wave radio-overfiber system employing heterodyning of uncorrelated optical carriers and self-homodyning of RF signal at the receiver. Opt Express 20(5):5707CrossRefGoogle Scholar
  9. Jung Y, Lee SB, Lee JW, Oh K (2005) Bandwidth control in a hybrid fiber acousto-optic filter. Opt Lett 30:84–86CrossRefGoogle Scholar
  10. Katrasnik J, Burmen M, Pernus F, Likar B (2010) Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems. Chemom Intell Lab 101:23–29CrossRefGoogle Scholar
  11. Lima Júnior AW, da Silva MG, Ferreira AC, Sombra ASB (2009) All-optical nonlinear switching cell made of photonic crystal. J Opt Soc Am A 26(7):1661–1667CrossRefGoogle Scholar
  12. Mantsevich SN, Korablev OI, Kalinnikov YUK, Ivanov AYU, Kiselev AV (2015) Wide-aperture TeO2 AOTF at low temperatures: operation and survival. Ultrason Vol 59:50–58CrossRefGoogle Scholar
  13. Mazzali C, Fragnito HL (1998) Optical PPM generator by direct-frequency shifting, in Optical fiber communication conference and exhibit. Tech Dig WM13 36:191–192Google Scholar
  14. Novitsky DV (2013) Effects of pulse collisions in a multilayer system with non instantaneous cubic nonlinearity. J Opt 15(3):035206CrossRefGoogle Scholar
  15. Onaka H, Miyata H, Kai Y, Yoshida S, Sone K, Takita Y, Tsunoda Y, Miyata H, Nakagawa G (2008) Compact photonic gateway for dynamic path control using acousto-optic tunable filter. Opt Swit Netw 5:75–84CrossRefGoogle Scholar
  16. Sabóia KDA, Ferreira AC, Sobrinho CS, Fraga WB, Menezes JWM, Lyra ML, Sombra ASB (2009) Optical cryptography under PPM-PAM modulation based in short optical pulses in an acoustic-optic tunable filter (AOTF). Opt Quant Electron 41(14–15):963–980CrossRefGoogle Scholar
  17. Sobrinho CS, Sombra ASB (2002) Picosecond pulse switching in an acousto-optic tunable filter (AOTF) with loss. Nonlinear Opt 29(1):79–97CrossRefGoogle Scholar
  18. Sobrinho CS, Lima JLS, de Almeida EF, Sombra ASB (2002a) Acousto-optic tunable filter (aotf) with increasing non-linearity and loss. Opt Commun 208(4–6):415–426CrossRefGoogle Scholar
  19. Sobrinho CS, Limae JLS, Sombra ASB (2002b) Interchannel crosstalk on the acousto-optic tunable filter (AOTF) for network applications. Microw Opt Technol Lett 35(3):230–235CrossRefGoogle Scholar
  20. Sobrinho CS, Ferreira AC, Menezes JWM, Guimarães GF, Fraga WB, Filho AFGF, Rocha HHB, Marciano SP, Sabóia KDA, Sombra ASB (2008) Analysis of an optical logic gate using a symmetric coupler operating with pulse position modulation (PPM). Opt Commun 281:1056–1064CrossRefGoogle Scholar
  21. Song DR, Jun CS, Lim SD, Kim BY (2014) Effect of metal coating in all-fiber acousto-optic tunable filter using torsional wave. Opt Express 22(25):30873–30881CrossRefGoogle Scholar
  22. Tamai H, Sarashina M, Iwamura H, Kashima M, Gupta GC, Ushikubo T, Kamijoh T, Chanclou P, Genay N, Landousies B, Mosek A, Gredziak M (2009) First demonstration of coexistence of standard gigabit TDM-PON and code division multiplexed PON architectures toward next generation access network. J Lightwave Technol 27(3):292–298CrossRefGoogle Scholar
  23. Tran CD (1997) Principles and analytical applications of acousto-optic tunable filters, an overview. Talanta 45:237CrossRefGoogle Scholar
  24. Veeriah S, Rahman FA, Mishra V (2007) Multiple parameter tuning of the bandwidth, wavelength and attenuation of a fiber-based acousto-optic tunable filter. Optik 118:481–486CrossRefGoogle Scholar
  25. Wake D, Lima CR, Davies PA (1996) Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source. IEEE Photon Technol Lett 8(4):578–580CrossRefGoogle Scholar
  26. Xie X, Zhang C, Sun T, Guo P, Zhu X, Zhu L, Hu W, Chen Z (2013) Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter. Opt Lett 38(5):655–657CrossRefGoogle Scholar
  27. Xu J, Stroud R (1992) Acousto optical devices: principles, design and applications. Wiley, New YorkGoogle Scholar
  28. Yariv A, Yeh P (1984) Optical waves in crystal: propagation and control of laser radiation. Wiley, New YorkGoogle Scholar
  29. Zhang W, Huang L, Gao F, Bo F, Zhang G, Xu J (2013) All-fiber tunable Mach–Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber. Opt Commun 292:46–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. V. N. Oliveira
    • 1
    • 2
    • 3
  • A. G. CoelhoJr
    • 2
    • 3
  • C. S. Sobrinho
    • 2
    • 4
  • A. C. Ferreira
    • 2
    • 5
  • J. C. Sales
    • 6
    • 3
  • J. R. R. Sousa
    • 7
    Email author
  • G. F. Guimarães
    • 1
    • 2
    • 5
  • J. W. M. Menezes
    • 1
    • 2
    • 5
  • M. L. Lyra
    • 8
  • A. S. B. Sombra
    • 2
  1. 1.Grupo de Pesquisa em Física Aplicada e DocênciaInstituto Federal de Educação, Ciência e Tecnologia do CearáSobralBrazil
  2. 2.Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de Engenharia de Teleinformática (DETI), Centro de TecnologiaUniversidade Federal do Ceará (UFC)FortalezaBrazil
  4. 4.Engenharia de Energias, Instituto de Engenharias e Desenvolvimento SustentávelUniversidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB)RedençãoBrazil
  5. 5.Programa de Pós-Graduação em Engenharia de Telecomunicações (PPGET)Instituto Federal de Educação, Ciência e Tecnologia do CearáFortalezaBrazil
  6. 6.Departamento de Engenharia de Civil, Centro de Ciências Exatas e TecnologiaUniversidade Estadual Vale do AcaraúSobralBrazil
  7. 7.Departamento de Engenharia de Civil, Centro de Ciências TecnológicasUniversidade de Fortaleza (Unifor)FortalezaBrazil
  8. 8.Instituto de FísicaUniversidade Federal de AlagoasMaceióBrazil

Personalised recommendations