Microsystem Technologies

, Volume 23, Issue 7, pp 2807–2814 | Cite as

Layer-dependent characterization of wear behaviour on variothermal injection moulded micro parts using pin on disc measurements

Technical Paper


In micro- and thin-wall injection moulding the process conditions affect the developed internal structures and thus the resulting part properties, e.g., wear behaviour. In this paper a dynamic mould tempering was used to affect the local morphology development and the resulting wear. Investigations with a pin on disc measurement on semi crystalline polymers reveal a distinct layer-dependent tribological behaviour of the injection moulded micro parts. Increased mould temperatures during injection moulding favour the morphological structure and the resulting part properties.



The authors gratefully acknowledge the German Research Foundation (DFG) for funding the work in DR421/16-1. We also extend our gratitude to our industrial partners Hofmann Innovation Group, Single GmbH, Ticona GmbH and BASF SE for providing equipment and material.


  1. Angelov AK, Coulter JP (2004) Micromolding product manufacture: a progress report. SPE Proceedings ANTEC, Chicago, pp 748–751Google Scholar
  2. Bibber DM (2004) Micro molding challenges. SPE Proceedings ANTEC, Chicago, pp 3703–3711Google Scholar
  3. Dallner CM, Kobes MO, Feulner R, Schmachtenberg E (2007) Proceedings PPS23, Salvador, BrazilGoogle Scholar
  4. Drummer D, Gruber K, Meister S (2011) Alternating temperature technology controls parts properties. Kunststoffe Int 101:25–27Google Scholar
  5. Drummer D, Kobes MO, Merken D (2012) SPE Proceedings ANTEC, Orlando, pp. 2226–2232Google Scholar
  6. Drummer D, Seefried A, Meister S (2014) Characterization of material stiffness on injection moulded microspecimens using different test methods. Adv Mat Sci Eng 2014:8. doi: 10.1155/2014/769206 Google Scholar
  7. Drummer D, Meister S, Wildner W (2016) Affecting processing and properties of injection moulded thin-wall parts using dynamic tempered Rapid Tooling moulds. J Plastics Technol 12:1–30Google Scholar
  8. Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastics: theory and practice. Hanser, MünchenCrossRefGoogle Scholar
  9. Fischer C, Leisen C, Merken D, Jungmeier A, Drummer D (2014) The influence of processing temperature on morphological and tribological properties of injection-moulded microparts. Adv Eng Mat 6:218761. doi: 10.1155/2014/218761 Google Scholar
  10. Giessauf J, Pillwein G, Steinbichler G (2008) Variotherm temperature control is fit for production. Kunststoffe Int 98:57–62Google Scholar
  11. Haberstroh E, Brandt M (2002) Determination of mechanical properties of thermoplastics suitable for micro systems. Macromol Mat Eng 287:881–888. doi: 10.1002/mame.200290023 CrossRefGoogle Scholar
  12. Jungmeier A (2010) Struktur und Eigenschaften spritzgegossener, thermoplastischer Mikroformteile: Struktur-Eigenschaftsbeziehungen und Verarbeitung, Dissertation, University Erlangen-NuernbergGoogle Scholar
  13. Kohan MI (1995) Nylon plastics handbook. Hanser Gardner Publications, MunichGoogle Scholar
  14. Künkel R, Ehrenstein GW (2005) SPE Proceedings ANTEC, Boston, pp. 1837–1841Google Scholar
  15. Lurz A, Kühnert I, Schmachtenberg E (2008) Influences on the properties of small and thin-walled in-jection molded parts—Part 2: importance of the thermal conductivity of the mold material. J Plast Technol 4:1–18Google Scholar
  16. Meister S, Drummer D (2013a) Affecting the ageing behaviour of injection moulded micro parts using variothermal mould tempering. Adv Mechan Eng 2013:7. doi: 10.1155/2013/407964 Google Scholar
  17. Meister S, Drummer D (2013b) Influence of manufacturing conditions on measurement of mechanical material properties on thermoplastic micro tensile bars. Polym Test 32:432–437. doi: 10.1016/j.polymertesting.2012.12.006 CrossRefGoogle Scholar
  18. Meister S, Jungmeier A, Drummer D (2012) Long term properties of injection moulded micro-parts: influence of part dimensions and cooling conditions on ageing behaviour. Maromol Mat Eng 297:994–1004. doi: 10.1002/mame.201100379 CrossRefGoogle Scholar
  19. Nguyen-Chung T, Loeser C, Juettner G, Obadal M, Pham T, Gehde M (2011) Morphology analysis of injection molded micro parts. J Plast Technol 7:86–114Google Scholar
  20. Pantani R, Balzano L, Peters GWM (2012) Flow-induced morphology of iPP solidified in a shear device. Macromol Mat Eng 297:60–67. doi: 10.1002/mame.201100158 CrossRefGoogle Scholar
  21. Pfirrmann O, Astor M (2006) Trendreport Mikrosystemtechnik. Prognos AG, BaselGoogle Scholar
  22. Schmiederer D, Schmachtenberg E (2006) Einflüsse auf die Eigenschaften kleiner und dünnwandiger Spritzgussteile. J Polym Technol 2:1–21Google Scholar
  23. Tom AM, Layser GS, Coulter JP (2006) SPE Proceedings ANTEC, Charlotte (USA), pp. 2541–2545Google Scholar
  24. Walter T, Schinkoethe W, Ehrfeld W, Schaumburg C, Weber L (1999) Injection moulding of microstructures with inductive mould heating. 16. Stuttgarter Kunststoff-Kolloquium, Stuttgart: 1–10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Polymer TechnologyFriedrich-Alexander-Universität Erlangen-NürnbergErlangen-TennenloheGermany

Personalised recommendations