Advertisement

Microsystem Technologies

, Volume 23, Issue 7, pp 2321–2328 | Cite as

Flexible piezoelectric micromachined ultrasonic transducer (pMUT) for application in brain stimulation

  • Jin-Hyung Lee
  • Il-Joo Cho
  • Kyungmin Ko
  • Eui-Sung Yoon
  • Hyung-Ho Park
  • Tae Song KimEmail author
Technical Paper

Abstract

We propose a new flexible piezoelectric micromachined ultrasonic transducer (pMUT) array integrated on flexible polydimethylsiloxane (PDMS) that can be used in studying brain stimulation by ultrasound. To achieve the technical demands of a high sound pressure level and flexibility, a diaphragm-type piezoelectric ultrasound transducer array was manufactured with 55 μm-thick bulk lead zirconate titanate (PZT) that was thinned after bonding with a silicon wafer. The ultrasound transducer array was then strongly bonded onto a PDMS substrate using an oxygen-plasma treatment followed by precise dicing with a fixed pitch to achieve flexibility. The radius of curvature was smaller than 5 mm, which is sufficient for attachment to the surface of a mouse brain. After a thinning process for the PZT layer, we observed that the PZT layer still maintained a high ferroelectric property. The measured remnant polarization (Pr) and coercive field (Ec) were 28.26 μC/cm2 and 79 kV/cm, respectively. The resonant frequencies of fabricated pMUT elements with different membrane sizes of 700, 800, 900, 1200 μm in diameter were measured to be 694.4, 565.4, 430.8, and 289.3 kHz, respectively. By measuring the ultrasound output pressure, a pMUT showed a sound intensity (Isppa) of 44 mW/cm2 at 80 V, which is high enough for low-intensity ultrasound brain stimulation.

Keywords

PDMS Deep Brain Stimulation Brain Stimulation Chemical Mechanical Polishing PDMS Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported financially by the KIST Institutional Program (Project No. 2E25590).

References

  1. Aktakka EE, Peterson RL, Najafi K (2011) Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. IEEE Transducers Proc 1649–1652Google Scholar
  2. Bystritsky A et al (2011) A review of low-intensity focused ultrasound pulsation. Brain Stimul 4:125–136. doi: 10.1016/j.brs.2011.03.007 CrossRefGoogle Scholar
  3. Cai Changlong, Huang Jing, Zhai Yujia, Ma Weihong, Liu Weiguo (2010) Patterning of PZT thin films. Chin Opt Lett 8:210–212. doi: 10.3788/col201008s1.0210 Google Scholar
  4. Che L, Halvorsen E, Chen X (2011) An optimized one-step wet etching process of Pb (Zr 0.52 Ti 0.48) O3 thin films for microelectromechanical system applications. J Micromech Microeng 21:105008. doi: 10.1088/0960-1317/21/10/105008
  5. Choi HS, Ding JL, Bandyopadhyay A, Anderson MJ, Bose S (2008) Characterization and modeling of a piezoelectric micromachined ultrasonic transducer with a very large length/width aspect ratio. J Micromech Microeng 18:025037. doi: 10.1088/0960-1317/18/2/025037 CrossRefGoogle Scholar
  6. Eccardt PC, Niederer K (2000) Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process. Ultrasonics 38:774–780CrossRefGoogle Scholar
  7. Gk Perçin, Atalar A, Levent Degertekin F, Khuri-Yakub BT (1998) Micromachined two-dimensional array piezoelectrically actuated transducers. Appl Phys Lett 72:1397. doi: 10.1063/1.121067 CrossRefGoogle Scholar
  8. Hu Y, Zhong W, Wan JMF, Yu ACH (2013) Ultrasound can modulate neuronal development: impact on neurite growth and cell body morphology ultrasound. Med Biol 39:915–925. doi: 10.1016/j.ultrasmedbio.2012.12.003 Google Scholar
  9. Jung J, Kim S, Lee W, Choi H (2013) Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections. J Micromech Microeng 23:125037. doi: 10.1088/0960-1317/23/12/125037 CrossRefGoogle Scholar
  10. King RL, Brown JR, Newsome WT, Pauly KB (2013) Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 39:312–331. doi: 10.1016/j.ultrasmedbio.2012.09.009 CrossRefGoogle Scholar
  11. Kinsler LE, Frey AR (1950) Fundamentals of acoustics. Wiley, New YorkGoogle Scholar
  12. Kochy M, Evans AGR, Brunnschweiler A (1998) The dynamic micropump driven with a screen printed PZT actuator. J Micromech Microeng 8:119–122CrossRefGoogle Scholar
  13. Ladabaum I, Jin X, Soh HT, Atalar A, Khuri-Yakub BT (1998) Surface micromachined capacitive ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 45:679–690CrossRefGoogle Scholar
  14. Mehic E, Xu JM, Caler CJ, Coulson NK, Moritz CT, Mourad PD (2014) Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS One 9:e86939. doi: 10.1371/journal.pone.0086939.g001 CrossRefGoogle Scholar
  15. Nyborg WL (2001) Biological effects of ultrasound: development of safety guidelines. Part 2: general review. Ultrasound Med Biol 27:301–333CrossRefGoogle Scholar
  16. Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10:1116–1124. doi: 10.1038/nn1944 CrossRefGoogle Scholar
  17. Szobota S et al (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545. doi: 10.1016/j.neuron.2007.05.010 CrossRefGoogle Scholar
  18. Tufail Y et al (2010) Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66:681–694. doi: 10.1016/j.neuron.2010.05.008 CrossRefGoogle Scholar
  19. Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ (2011) Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc 6:1453–1470. doi: 10.1038/nprot.2011.371 CrossRefGoogle Scholar
  20. Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565. doi: 10.1146/annurev.bioeng.9.061206.133100 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jin-Hyung Lee
    • 1
    • 2
  • Il-Joo Cho
    • 1
  • Kyungmin Ko
    • 1
  • Eui-Sung Yoon
    • 1
  • Hyung-Ho Park
    • 2
  • Tae Song Kim
    • 1
    Email author
  1. 1.Center for BioMicrosystemsKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
  2. 2.Department of Materials Science and EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations