Microsystem Technologies

, Volume 22, Issue 7, pp 1741–1746 | Cite as

Influence of design and fabrication on RF performance of capacitive RF MEMS switches

  • Anna Persano
  • Fabio Quaranta
  • Giovanni Capoccia
  • Emanuela Proietti
  • Andrea Lucibello
  • Romolo Marcelli
  • Alvise Bagolini
  • Jacopo Iannacci
  • Antonietta Taurino
  • Pietro Siciliano
Technical Paper

Abstract

Shunt capacitive radio-frequency microelectromechanical system (RF MEMS) switches were fabricated on silicon substrate and characterized in the RF domain. Various switch typologies were obtained by three different approaches, which are: (1) the change of the bridge geometric parameters, (2) the covering of the actuator with a floating metal, and (3) the deposition of the bridge directly on the actuator. The S parameters of the fabricated switches were measured in the up and down states, observing the impact on the RF performance of the variation of the geometric parameters and the fabrication process. The electromagnetic modelling of the fabricated switches was used to interpret the measured RF behaviour, allowing to elucidate the drawbacks of the non-perfect conforming of the bridge on the actuator. Finally, the reliability of the fabricated RF MEMS switches under a bipolar voltage excitation was evaluated by cycling tests. Hence, the study presented here provides guidelines to solve some issues of the tight correlation between design, fabrication, performance, and reliability of RF MEMS switches, in view of a large-scale development of these devices.

References

  1. Bansal D, Kumar A, Sharma A, Kumar P, Rangra KJ (2014) Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Microsyst Technol 20:337–340CrossRefGoogle Scholar
  2. Bartolucci G, Marcelli R, Catoni S, Margesin B, Giacomozzi F, Mulloni V, Farinelli P (2008) An equivalent-circuit model for shunt-connected coplanar microelectromechanical system switches for high frequency applications. J Appl Physics 104:084514-1–084514-8CrossRefGoogle Scholar
  3. Calaza C, Margesin B, Giacomozzi F, Rangra K, Mulloni V (2007) Electromechanical characterization of low actuation voltage RF MEMS capacitive switches based on DC CV measurements. Microelectr Eng 84:1358–1362CrossRefGoogle Scholar
  4. Chu C-H, Shih W-P, Chung S-Y, Tsai H-C, Shing T-K, Chang P-Z (2007) A low actuation voltage electrostatic actuator for RF MEMS switch applications. J Micromech Microeng 17:1649–1656CrossRefGoogle Scholar
  5. Giacomozzi F, Calaza C, Colpo S, Mulloni V, Collini A, Margesin B, Farinelli P, Casini F, Marcelli R, Mannocchi G, Vietzorreck L (2008) Development of high con coff ratio RF MEMS shunt switches. Romanian J Inform Sci Techn 11(2):143–151Google Scholar
  6. Iannacci J (2015) Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 37:62–71CrossRefGoogle Scholar
  7. Kim J, Kwon S, Jeong H, Hong Y, Lee S, Song I, Ju B (2009) A stiff and flat membrane operated DC contact type RF MEMS switch with low actuation voltage. Sens Actuators A 153:114–119CrossRefGoogle Scholar
  8. Marcelli R, Bartolucci G, Minucci G, Margesin B, Giacomozzi F, Vitulli F (2004) Lumped element modelling of coplanar series RF MEMS switches. Electron Lett 40(20):1272–1274CrossRefGoogle Scholar
  9. Marcelli R, Papaioannu G, Catoni S, De Angelis G, Lucibello A, Proietti E, Margesin B, Giacomozzi F, Deborgies F (2009) Dielectric charging in microwave microelectromechanical Ohmic series and capacitive shunt switches. J Appl Phys 105:114514-1–114514-10CrossRefGoogle Scholar
  10. Mulloni V, Giacomozzi F, Margesin B (2010) Controlling stress and stress gradient during the release process in gold suspended micro-structures. Sens Actuators A 162:93–99CrossRefGoogle Scholar
  11. Peroulis D, Pacheco SP, Sarabandi K, Katehi LPB (2003) Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Trans Microw Theory Tech 51(1):259–270CrossRefGoogle Scholar
  12. Peroulis D, Pacheco SP, Sarabandi K, Katehi LPB (2004) RF MEMS switches with enhanced power-handling capabilities. IEEE Trans Microw Theory Tech 52(1):59–68CrossRefGoogle Scholar
  13. Persano A, Cola A, De Angelis G, Taurino A, Siciliano P, Quaranta F (2011) Capacitive RF MEMS switches with tantalum-based materials. J Micrelectrom Syst 20(2):365–370CrossRefGoogle Scholar
  14. Persano A, Tazzoli A, Cola A, Siciliano P, Meneghesso G, Quaranta F (2012a) Reliability enhancement by suitable actuation waveforms for capacitive RF MEMS switches in III–V technology. J Micrelectrom Syst 21(2):414–419CrossRefGoogle Scholar
  15. Persano A, Tazzoli A, Farinelli P, Meneghesso G, Siciliano P, Quaranta F (2012b) K-band capacitive MEMS switches on GaAs substrate: design, fabrication, and reliability. Microelectr Reliab 52:2245–2249CrossRefGoogle Scholar
  16. Persano A, Quaranta F, Martucci MC, Siciliano P, Cola A (2015) On the electrostatic actuation of capacitive RF MEMS switches on GaAs substrate. Sens Actuators A 232:202–207CrossRefGoogle Scholar
  17. Philippine MA, Zareie H, Sigmund O, Rebeiz GM, Kenny TW (2013) Experimental validation of topology optimization for RF MEMS capacitive switch design. J Micrelectrom Syst 22(6):1296–1309CrossRefGoogle Scholar
  18. Rebeiz G (2003) RF MEMS Theory, Design, and Technology. Wiley-Interscience, New YorkGoogle Scholar
  19. Rezvanian O, Zikry MA, Brown C, Krim J (2007) Surface roughness, asperity contact and gold RFMEMS switch behavior. J Micromech Microeng 17:2006–2015CrossRefGoogle Scholar
  20. van Spengen WM (2012) Capacitive RF MEMS switch dielectric charging and reliability: a critical review with recommendations. J Micromech Microeng 22(7):074001-1–074001-23Google Scholar
  21. Yu AB, Liu AQ, Zhang QX, Hosseini HM (2006) Effects of surface roughness on electromagnetic characteristics of capacitive switches. J Micromech Microeng 16:2157–2166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anna Persano
    • 1
  • Fabio Quaranta
    • 1
  • Giovanni Capoccia
    • 1
  • Emanuela Proietti
    • 2
  • Andrea Lucibello
    • 2
  • Romolo Marcelli
    • 2
  • Alvise Bagolini
    • 3
  • Jacopo Iannacci
    • 3
  • Antonietta Taurino
    • 1
  • Pietro Siciliano
    • 1
  1. 1.IMM-CNR, Institute for Microelectronics and Microsystems-Unit of Lecce, National Research CouncilLecceItaly
  2. 2.IMM-CNR, Institute for Microelectronics and Microsystems-Unit of Roma, National Research CouncilRomaItaly
  3. 3.FBK, Fondazione B. Kessler-Center for Materials and MicrosystemsTrentoItaly

Personalised recommendations