Advertisement

Microsystem Technologies

, Volume 22, Issue 7, pp 1709–1719 | Cite as

The charge push-through electronics design for fully implantable artificial cochlea powered by energy harvesting technologies

  • Jaromir ZakEmail author
  • Zdenek Hadas
  • Daniel Dusek
  • Jan Pekarek
  • Vojtech Svatos
  • Ludek Janak
  • Jan Prasek
  • Jaromir Hubalek
Technical Paper

Abstract

An implant of artificial cochlea is the only way how to recover lost hearing in some cases. Fully implantable artificial cochlea in comparison with recent approaches including partially implantable devices is proposed and discussed in this work. The proposed implant consists of subcircuits which are designed in close context to reach optimal performance and the lowest power consumption. Power consumption of the device is decreased to a value which allows designing the device as a zero-powered system using energy harvesting. A combination of micro-mechanized diaphragm filter bank, energy harvesting power source and especially ultra-low power processing electronics is presented in this article. A new technique of output signal generation for nerve stimulation is described. This new technique named charge push-through uses the major part of energy generated by energy harvesting subcircuit for output useful signal generation with minimal undesirable current. Thermal and mechanical parts were investigated using complex electro-mechanical simulations. The real energy harvesting power source (human motion, temperature) was experimentally measured. Signal processing circuits powered by energy harvesting power source were designed and simulated. The new signal processing circuits were simulated in relation to the results of complex electro mechanical diaphragm and SPICE energy harvesting power source simulation.

Keywords

Cochlear Implant Acoustic Pressure Output Buffer Acoustic Sensor Bipolar Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This paper has been supported by the project “A new types of electronic circuits and sensors for specific applications” No. FEKT-S-14-2,300 and by the National Sustainability Program under Grant LO1401. For the research, infrastructure of the SIX Center was used.

References

  1. Briggs RJS et al (2008) Initial clinical experience with a totally implantable cochlear implant research device. Otol Neurotol 29:114–119. doi: 10.1097/MAO.0b013e31814b242f CrossRefGoogle Scholar
  2. Demosthenous A (2014) Advances in Microelectronics for Implantable Medical Devices. Adv Electron 2014:21. doi: 10.1155/2014/981295 CrossRefGoogle Scholar
  3. Dusek D, Hadas Z, Pekarek J, Svatos V, Zak J, Prasek J, Hubalek J (2015) Design of an artificial microelectromechanical cochlea. Solid State Phenom 220:345–348CrossRefGoogle Scholar
  4. Erismis MA (2013) Design and modeling of a new robust multi-mass coupled-resonator family with dynamic motion amplification. Microsyst Technol 19:1105–1110. doi: 10.1007/s00542-012-1706-7 CrossRefGoogle Scholar
  5. Fan-Gang Z, Rebscher S, Harrison W, Xiaoan S, Haihong F (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 1:115–142. doi: 10.1109/RBME.2008.2008250 CrossRefGoogle Scholar
  6. Frijns JM, Briaire J (2014) Auditory prosthesis. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, New York, pp 1–6. doi: 10.1007/978-1-4614-7320-6_554-1
  7. Hadas Z, Ondrusek C, Singule V (2010) Power sensitivity of vibration energy harvester. Microsyst Technol 16:691–702. doi: 10.1007/s00542-010-1046-4 CrossRefGoogle Scholar
  8. Inaoka T et al (2011) Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc Natl Acad Sci 108:18390–18395. doi: 10.1073/pnas.1110036108 CrossRefGoogle Scholar
  9. Kim WD, Lee JH, Choi HS, Hur S, Park JS (2011) Design of a totally implantable artificial cochlea mimicking the human hearing mechanism. In: Han M-W, Lee J (eds) EKC 2010, vol 138. Springer Proceedings in Physics. Springer Berlin Heidelberg, pp 67–75. doi: 10.1007/978-3-642-17913-6_9
  10. Laizou PC (1999) Signal-processing techniques for cochlear implants. IEEE Eng Med Biol Mag 18:34–46. doi: 10.1109/51.765187 CrossRefGoogle Scholar
  11. Lan N, Nie KB, Gao SK, Zeng FG (2004) A novel speech-processing strategy incorporating tonal information for cochlear implants. IEEE Trans Biomed Eng 51:752–760. doi: 10.1109/TBME.2004.826597 CrossRefGoogle Scholar
  12. Lineykin S, Ben-Yaakov S (2007) Modeling and analysis of thermoelectric modules industry applications. IEEE Trans 43:505–512. doi: 10.1109/TIA.2006.889813 Google Scholar
  13. Razzaghpour M, Golmakani A (2008) An ultra-low-voltage ultra-low-power OTA with improved gain-bandwidth product. In: Proceedings of ICM 2008, pp 39–42. doi: 10.1109/ICM.2008.5393821
  14. Rohr RV (2011) Cochlear Implant Impedance Telemetry Measurements and Model Calculations to Estimate Modiolar Currents., University of ZurichGoogle Scholar
  15. Shintaku H, Nakagawa T, Kitagawa D, Tanujaya H, Kawano S, Ito J (2010) Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea. Sens Actuators A 158:183–192. doi: 10.1016/j.sna.2009.12.021 CrossRefGoogle Scholar
  16. Svatos V, Pekarek J, Dusek D, Zak J, Hadas Z, Prasek J (2015) Design and fabrication of fully implantable MEMS Cochlea. Proc Eng 100:1224–1231. doi: 10.1016/j.proeng.2015.01.487 CrossRefGoogle Scholar
  17. Tognola G et al (2005) Measurement of electrode current pulses from cochlear implants. IEEE Trans Instrum Meas 54:2105–2112. doi: 10.1109/TIM.2005.855120 CrossRefGoogle Scholar
  18. Waltzman SB, Roland JT (2011) Cochlear Implants. Thieme, New YorkGoogle Scholar
  19. Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens Actuators A 52:8–11. doi: 10.1016/0924-4247(96)80118-X CrossRefGoogle Scholar
  20. Yawn R, Hunter JB, Sweeney AD, Bennett ML (2015) Cochlear implantation: a biomechanical prosthesis for hearing loss F1000Prime Rep 7(45):1–6. doi: 10.12703/P7-45
  21. Zak J, Hadas Z, Dusek D, Pekarek J, Svatos V, Janak L, Prasek J (2015) Design of the charge push-through electronics for fully implantable artificial cochlea. pp 95–180P-95180P-95189. doi: 10.1117/12.2178987
  22. Zak J, Hadas Z, Dusek D, Pekarek J, Svatos V, Janak L, Prasek J (2015) Model-based design of artificial zero power cochlear implant. Mechatronics. doi: 10.1016/j.mechatronics.2015.04.018
  23. Zeng FG, Popper AN, Fay RR (2004) Cochlear implants: auditory prostheses and electric hearing. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jaromir Zak
    • 1
    • 2
    Email author
  • Zdenek Hadas
    • 1
    • 3
  • Daniel Dusek
    • 1
    • 3
  • Jan Pekarek
    • 1
    • 2
  • Vojtech Svatos
    • 1
    • 2
  • Ludek Janak
    • 1
    • 3
  • Jan Prasek
    • 1
    • 2
  • Jaromir Hubalek
    • 1
    • 2
  1. 1.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  2. 2.SIX Research CentreBrno University of TechnologyBrnoCzech Republic
  3. 3.Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations