Microsystem Technologies

, Volume 22, Issue 7, pp 1633–1638 | Cite as

Single-mode—multimode—single-mode and lossy mode resonance-based devices: a comparative study for sensing applications

  • Abian Bentor Socorro
  • Miguel Hernaez
  • Ignacio Del Villar
  • Jesús María Corres
  • Francisco Javier Arregui
  • Ignacio Raul Matias
Technical Paper

Abstract

In this work, a thin-film consisting of 15 bilayers (estimated thickness: 210 nm) of titanium (IV) oxide and poly(sodium 4-styrenesulfonate) is simultaneously deposited onto two optical fiber structures: a single-mode—multimode—single-mode (SMS) device and a lossy mode resonance (LMR)-based device. The performance of both structures, as refractometers and relative humidity sensors, is studied and compared. In both cases, the sensitivity of the LMR-based device (955 nm/RIU and 3.54 nm/RH %, respectively) highly improves the one of the SMS (142 nm/RIU and 0.3 nm/RH %). These facts can be taken into account when developing sensors based on either SMS or LMR technologies.

Notes

Acknowledgments

This work was supported by the Spanish Economy and Competitiveness Ministry project FEDER TEC2013-43679-R and by a Public University of Navarra pre-doctoral research grant. Authors would like to express their gratitude to Nadetech Innovations Inc. for the automation of the deposition processes.

References

  1. Culshaw B, Kersey A (2008) Fiber-optic sensing: a historical perspective. J Light Technol 26(9):1064CrossRefGoogle Scholar
  2. Del Villar I, Matias IR, Arregui FJ, Claus RO (2005) Fiber-optic hydrogen peroxide nanosensor. IEEE Sens J 5:365CrossRefGoogle Scholar
  3. Del Villar I, Zamarreño CR, Sanchez P, Hernaez M, Valdivielso CF, Arregui FJ, Matias IR (2010) Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J Opt 12(9):095503CrossRefGoogle Scholar
  4. Del Villar I, Hernaez M, Zamarreño CR, Sánchez P, Fernández-Valdivielso C, Arregui FJ, Matias IR (2012) Design rules for lossy mode resonance based sensors. Appl Opt 51(19):4298CrossRefGoogle Scholar
  5. Del Villar I, Socorro AB, Corres JM, Arregui FJ, Matias IR, Member S (2013) Optimization of Sensors Based on Multimode Interference in Single-Mode–Multimode–Single-Mode Structure. J Light Technol 31(22):3460CrossRefGoogle Scholar
  6. Del Villar I, Socorro AB, Corres JM, Arregui FJ, Matías IR (2014) Refractometric sensors based on multimode interference in a thin-film coated single-mode-multimode-single-mode structure with reflection configuration. Appl Opt 53:3913CrossRefGoogle Scholar
  7. Gu Z, Xu Y, Gao K (2006) Optical fiber long-period grating with solgel coating for gas sensor. Opt Lett 31(16):2405CrossRefGoogle Scholar
  8. Hernaez M, Del Villar I, Zamarreño CR, Arregui FJ, Matias IR (2010) Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings. Appl Opt 49(20):3980CrossRefGoogle Scholar
  9. Mohammed WS, Smith PWE, Gu X (2006) All-fiber multimode interference bandpass filter. Opt Lett 31(17):2547CrossRefGoogle Scholar
  10. Razansky D, Einziger PD, Adam DR (2005) Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films. Phys Rev Lett 95:018101CrossRefGoogle Scholar
  11. Ruiz-Pérez VI, Basurto-Pensado M, LiKamW P, Sánchez-Mondragón JJ, May-Arrioja D (2011) Fiber optic pressure sensor using multimode interference. J Phys Conf Ser 274:012025CrossRefGoogle Scholar
  12. Sanchez-Zabal P, Zamarreño CR, Hernaez M, Matias IR, Arregui FJ (2014) Optical fiber refractometers based on lossy mode resonances by means of SnO2 sputtered coatings. Sens Actuators B Chem 202:154CrossRefGoogle Scholar
  13. Silva S, Pachon EGP, Franco MAR, Hayashi JG, Malcata FX, Frazão O, Jorge P, Cordeiro CMB (2012) Ultrahigh-sensitivity temperature fiber sensor based on multimode interference. Appl Opt 51(16):3236CrossRefGoogle Scholar
  14. Socorro AB, Del Villar I, Corres JM, Arregui FJ, Matias IR (2011) Influence of waist length in lossy mode resonances generated with coated tapered single-mode optical fibers. IEEE Photonics Technol Lett 23(21):1579CrossRefGoogle Scholar
  15. Socorro AB, Del Villar I, Corres JM, Arregui FJ, Matias IR (2013) Mode transition in complex refractive index coated single-mode–multimode–single-mode structure. Opt Express 21(10):12668CrossRefGoogle Scholar
  16. Soldano LB, Pennings ECM (1995) Optical multi-mode interference devices based on self-imaging : principles and applications. J Light Technol 13(4):615CrossRefGoogle Scholar
  17. Tian Y, Wang W, Wu N, Zou X, Wang X (2011) Tapered optical fiber sensor for label-free detection of biomolecules. Sensors 11(4):3780CrossRefGoogle Scholar
  18. Yeo TL, Sun T, Grattan KTV (2008) Fibre-optic sensor technologies for humidity and moisture measurement. Sens Actuators A Phys 144(2):280CrossRefGoogle Scholar
  19. Zamarreño CR, Hernaez M, Del Villar I, Matias IR, Arregui FJ (2011) Lossy mode resonance-based optical fiber humidity sensor. IEEE Sens Conf, p 234Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Abian Bentor Socorro
    • 1
  • Miguel Hernaez
    • 1
  • Ignacio Del Villar
    • 1
  • Jesús María Corres
    • 1
  • Francisco Javier Arregui
    • 1
  • Ignacio Raul Matias
    • 1
  1. 1.UPNA Sensors, Electrical and Electronic Engineering Department, Institute of Smart CitiesPublic University of NavarraPamplonaSpain

Personalised recommendations