Microsystem Technologies

, Volume 23, Issue 1, pp 245–253 | Cite as

Influence of short fibre reinforcement on properties of injection moulded micro parts in dependence of fibre content and part dimensions

Technical Paper
  • 116 Downloads

Abstract

Varying part dimensions usually result in reduced usable material properties. The dependence of the resultant part properties with reduced part dimensions associated with fibre reinforcement is largely uninvestigated. This paper discusses the interactions between different part dimensions and varying short glass fibre reinforcement. The results show that fibre reinforcement can favour the use of mechanical material properties. However, the amount is dependent of the fibre content and the part dimensions available.

References

  1. Abbasi S, Derdouri A, Carreau PJ (2011) Properties of microinjection molding of polymer multiwalled carbon nanotube conducting composites. Polym Eng Sci 51:992–1003. doi:10.1002/pen.21904 CrossRefGoogle Scholar
  2. Altan MC (1990) A review of fiber-reinforced injection molding: flow kinematics and particle orientation. J Thermoplast Compos Mat 3:275–313. doi:10.1177/089270579000300402 CrossRefGoogle Scholar
  3. Angelov AK, Coulter JP (2004) Micromolding product manufacture: a progress report. SPE Proc ANTEC, Chicago, pp 748–751Google Scholar
  4. Bibber DM (2004) Micro molding challenges. SPE Proc ANTEC, Chicago, pp 3703–3711Google Scholar
  5. Drummer D, Ehrenstein GW, Hopmann C, Vetter K, Meister S, Fischer T, Piotter V, Prokop J (2012) Innovative process technologies for manufacturing thermoplastic micro parts—analysis and comparative assessment. J Plast Technol 8:439–467Google Scholar
  6. Ferreira T, Lopes PE, Pontes AJ, Paiva MC (2014) Microinjection molding of polyamide 6. Polym Adv Technol 25:891–895. doi:10.1002/pat.3322 CrossRefGoogle Scholar
  7. Giboz J, Copponnex T, Mélé P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17:96–109. doi:10.1088/0960-1317/17/6/R02 CrossRefGoogle Scholar
  8. Giboz J, Copponnex T, Mélé P (2009) Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding. J Micromech Microeng 19:1–12. doi:10.1088/0960-1317/19/2/025023 CrossRefGoogle Scholar
  9. Haberstroh E, Brandt M (2002) Determination of mechanical properties of thermoplastics suitable for micro systems. Macromol Mat Eng 287:881–888. doi:10.1002/mame.200290023 CrossRefGoogle Scholar
  10. Jungmeier A (2010) Struktur und Eigenschaften spritzgegossener, thermoplastischer Mikroformteile. PhD thesis, University Erlangen-NuernbergGoogle Scholar
  11. Liou GL, Young WB (2010) The filling behavior of reinforcing glass fiber in micro injection molding. Int Polym Process 25:264–269. doi:10.3139/217.2356 CrossRefGoogle Scholar
  12. Mahmoodi M, Park SS, Rizvi G (2012) Feasibility study of thin microinjection molded components. Polym Eng Sc 52:180–190. doi:10.1002/pen.22062 CrossRefGoogle Scholar
  13. Meister S, Drummer D (2013) Influence of manufacturing conditions on measurement of mechanical material properties on thermoplastic micro tensile bars. Polym Testing 32:432–437. doi:10.1016/j.polymertesting.2012.12.006 CrossRefGoogle Scholar
  14. Meister S, Jungmeier A, Drummer D (2012) Long term properties of injection moulded micro-parts: influence of part dimensions and cooling conditions on ageing behaviour. Macromol Mater Eng 297:994–1004. doi:10.1002/mame.201100379 CrossRefGoogle Scholar
  15. Meister S, Vetter K, Ehrenstein GW, Drummer D (2013) Measurement of mechanical material properties for micro parts on injection moulded micro tensile bars. J Plast Technol 9:74–99Google Scholar
  16. Menges G, Geisbuesch P (1982) Die Glasfaserorientierung und ihr Einfluss auf die mechanischen Eigenschaften thermoplastischer Spritzgiessteile—Eine Abschaetzmethode. Colloid Polym Sc 260:73–81. doi:10.1007/BF01447678 CrossRefGoogle Scholar
  17. Michaeli W, Spennemann A, Gaertner R (2002) New plastification concepts for micro injection moulding. Microsyst Technol 8:55–57. doi:10.1016/j.polymertesting.2012.12.006 CrossRefGoogle Scholar
  18. Mlekusch B (1999) Short fibre reinforced injection moulded parts. Kunststoffe Plast Europe 89:33–37Google Scholar
  19. Pfirrmann O, Astor M (2006) Trendreport Mikrosystemtechnik. Prognos AGGoogle Scholar
  20. Rahman NA, Hassan A, Yahya R, Lafia-Araga RA, Hornsby PR (2012) Micro-structural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites. J Reinf Plast Compos 31:269–281. doi:10.1177/0731684411435727 CrossRefGoogle Scholar
  21. Schmiederer D, Schmachtenberg E (2006) Einflüsse auf die Eigenschaften kleiner und dünnwandiger Spritzgussteile. J Plast Technol 2:1–21Google Scholar
  22. Schmiederer D, Kuehnert I, Schmachtenberg E (2008) Gentle injection molding by local exclusion of oxygen. Plast Technol 4:1–22Google Scholar
  23. Vetter M, Drummer D (2013) Calculation of the anisotropic, temperatur-dependent thermal expansion coefficient (TEC) of parts made from short-fiber-reinforced polymers. SPE Proc ANTEC, Cincinnati, pp 309–315Google Scholar
  24. Yang C, Yin XH, Cheng GM (2013) Microinjection molding of microsystem components: new aspects in improving performance. J Micromec Microeng 23:093001. doi:10.1088/09601317/23/9/093001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dietmar Drummer
    • 1
  • Martina Heinle
    • 1
  • Steve Meister
    • 1
  1. 1.Institute of Polymer TechnologyFriedrich-Alexander-Universität Erlangen-NürnbergErlangen-TennenloheGermany

Personalised recommendations