Advertisement

Microsystem Technologies

, Volume 22, Issue 7, pp 1529–1534 | Cite as

Miniaturized devices for isothermal DNA amplification addressing DNA diagnostics

  • G. D. Kaprou
  • G. Papadakis
  • D. P. Papageorgiou
  • G. Kokkoris
  • V. Papadopoulos
  • I. Kefala
  • E. Gizeli
  • A. Tserepi
Technical Paper

Abstract

Microfluidics is an emerging technology enabling the development of lab-on-a-chip systems for clinical diagnostics, drug discovery and screening, food safety and environmental analysis. Currently, available nucleic acid diagnostic tests take advantage of polymerase chain reaction that allows exponential amplification of portions of nucleic acid sequences that can be used as indicators for the identification of various diseases. At the same time, isothermal methods for DNA amplification are being developed and are preferred for their simplified protocols and the elimination of thermocycling. Here, we present a low-cost and fast DNA amplification device for isothermal helicase dependent amplification implemented in the detection of mutations related to breast cancer as well as the detection of Salmonella pathogens. The device is fabricated by mass production amenable technologies on printed circuit board substrates, where copper facilitates the incorporation of on-chip microheaters, defining the thermal zone necessary for isothermal amplification methods.

Keywords

Microfluidic Device Print Circuit Board Computer Numerical Control Temperature Ramp Substrate Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge Dr. S. Chatzandroulis, NCSR “Demokritos”, for the development of the temperature control unit, to be presented in detail in future work. This work is partly funded by the General Secretariat for Research and Technology/Ministry of Education, Greece and European Regional Development Fund (Sectoral Operational Program: Competitiveness and Entrepreneurship, NSRF 2007-2013)/European Commission (“SYNERGASIA II” project “LambSense: Converging Lamb wave sensors with microtechnologies towards an integrated Lab-on-chip for clinical diagnostics” 11SYN-5-502) and the EC under FP7-ICT-2011.3.2 “LOVE-FOOD: Love wave fully integrated Lab-on-Chip platform for food pathogen detection” (Grant Agreement No: 317742).

References

  1. Ahmad F, Hashsham SA (2012) Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review. Anal Chim Acta 733:1–15. doi: 10.1016/j.aca.2012.04.031 CrossRefGoogle Scholar
  2. Aracil C, Perdigones F, Moreno JM, Luque A, Quero JM (2015) Portable lab-on-PCB platform for autonomous micromixing. Microelectron Eng 131:13–18. doi: 10.1016/j.mee.2014.10.018 CrossRefGoogle Scholar
  3. Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11:1420–1430. doi: 10.1039/c0lc00666a CrossRefGoogle Scholar
  4. Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26. doi: 10.1016/j.aca.2003.09.019 CrossRefGoogle Scholar
  5. Fang X, Liu Y, Kong J, Jiang X (2010) Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem 82:3002–3006. doi: 10.1021/ac1000652 CrossRefGoogle Scholar
  6. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies—a review. Nucleosides Nucleotides Nucleic Acids 27:224–243. doi: 10.1080/15257770701845204 CrossRefGoogle Scholar
  7. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110. doi: 10.1039/b706364b CrossRefGoogle Scholar
  8. Kaprou G et al (2015) Miniaturized devices towards an integrated lab-on-a-chip platform for DNA diagnostics. In: Progress in biomedical optics and imaging, Proceedings of SPIE. doi: 10.1117/12.2181953
  9. Kefala IN, Papadopoulos VE, Karpou G, Kokkoris G, Papadakis G, Tserepi A (2015) A labyrinth split and merge micromixer for bioanalytical applications. Microfluid Nanofluid. doi: 10.1007/s10404-015-1610-4 Google Scholar
  10. Kopp MU, De Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048. doi: 10.1126/science.280.5366.1046 CrossRefGoogle Scholar
  11. Lutz S et al (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893. doi: 10.1039/b921140c CrossRefGoogle Scholar
  12. Mahalanabis M, Do J, Almuayad H, Zhang JY, Klapperich CM (2010) An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdev 12:353–359. doi: 10.1007/s10544-009-9391-8 CrossRefGoogle Scholar
  13. Mahmoudian L, Kaji N, Tokeshi M, Nilsson M, Baba Y (2008) Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip. Anal Chem 80:2483–2490. doi: 10.1021/ac702289j CrossRefGoogle Scholar
  14. Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182. doi: 10.1039/b820557b CrossRefGoogle Scholar
  15. Moschou D et al (2013) Integrated biochip for PCR-based DNA amplification and detection on capacitive biosensors. In: Progress in biomedical optics and imaging—proceedings of SPIE. doi: 10.1117/12.2017690
  16. Moschou D, Vourdas N, Kokkoris G, Papadakis G, Parthenios J, Chatzandroulis S, Tserepi A (2014) All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sens Actuators B Chem 199:470–478. doi: 10.1016/j.snb.2014.04.007 CrossRefGoogle Scholar
  17. Papadakis G, Gizeli E (2014) Screening for mutations in BRCA1 and BRCA2 genes by measuring the acoustic ratio with QCM. Anal Methods 6:363–371. doi: 10.1039/c3ay41143e CrossRefGoogle Scholar
  18. Papadopoulos VE et al (2014) A passive micromixer for enzymatic digestion of DNA. Microelectron Eng 124:42–46. doi: 10.1016/j.mee.2014.04.011 CrossRefGoogle Scholar
  19. Papadopoulos VE, Kokkoris G, Kefala IN, Tserepi A (2015) Comparison of continuous-flow and static-chamber μPCR devices through a computational study: the potential of flexible polymeric substrates. Microfluid Nanofluid 19:867–882. doi: 10.1007/s10404-015-1613-1 CrossRefGoogle Scholar
  20. Shen K, Chen X, Guo M, Cheng J (2005) A microchip-based PCR device using flexible printed circuit technology. Sens Actuators B Chem 105:251–258. doi: 10.1016/j.snb.2004.05.069 CrossRefGoogle Scholar
  21. Tsougeni K et al (2016) Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis. Lab Chip. doi: 10.1039/C5LC01217A Google Scholar
  22. Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800. doi: 10.1038/sj.embor.7400200 CrossRefGoogle Scholar
  23. Vorkas PA, Christopoulos K, Kroupis C, Lianidou ES (2010) Mutation scanning of exon 20 of the BRCA1 gene by high-resolution melting curve analysis. Clin Biochem 43:178–185. doi: 10.1016/j.clinbiochem.2009.08.024 CrossRefGoogle Scholar
  24. Wego A, Richter S, Pagel L (2001) Fluidic microsystems based on printed circuit board technology. J Micromech Microeng 11:528–531. doi: 10.1088/0960-1317/11/5/313 CrossRefGoogle Scholar
  25. Wu A, Wang L, Jensen E, Mathies R, Boser B (2010) Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 10:519–521. doi: 10.1039/b922830f CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • G. D. Kaprou
    • 1
    • 2
  • G. Papadakis
    • 3
  • D. P. Papageorgiou
    • 1
    • 4
  • G. Kokkoris
    • 1
  • V. Papadopoulos
    • 1
  • I. Kefala
    • 1
  • E. Gizeli
    • 2
    • 3
  • A. Tserepi
    • 1
  1. 1.Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”AthensGreece
  2. 2.Department of BiologyUniversity of CreteHeraklionGreece
  3. 3.Institute of Molecular Biology and Biotechnology, FORTHHeraklionGreece
  4. 4.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations